IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7596-d942431.html
   My bibliography  Save this article

Simulation Research on Thermal Deviation in 700 °C Ultra-Supercritical Boiler

Author

Listed:
  • Zheng Kong

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Jianquan Liu

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Changxin Zhou

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

Abstract

Based on commercial CFD software, a 700 °C ultra-supercritical tangential boiler was simulated by the orthogonal test method, and the thermal deviation of flue gas at the furnace outlet section was used as the optimization index. Three horizontal optimization treatments are designed respectively for the air distribution mode of secondary air (factor A), the reverse tangent angle of the separate over-fire air (factor B), and the upper swing angle of the burner (factor C). The range analysis method, variance analysis method, and weight matrix analysis method are used to determine the factor and level combination of the best optimization effect and the weight of each factor. The research results show that the significance of the influence of each factor on the optimization index is: B > C > A (reverse tangent angle of the separate over-fire air > the upper swing angle of the burner > the secondary air distribution mode); the weight ratios of the three factors are: factor A is 0.080, factor B is 0.543, and factor C is 0.241; based on the three analysis methods, it is concluded that factor B has a highly significant impact on the optimization index, factor C has an impact on the optimization index, and factor A has no impact on the optimization index, and it is determined that the optimal factor and level combination of the orthogonal test is A 1 B 3 C 3 . Under this combination, the thermal deviation in the furnace is 1.349 K, and the problem of thermal deviation is basically eliminated, being 116.066 K lower than the highest thermal deviation of 117.415 K, which is very obvious.

Suggested Citation

  • Zheng Kong & Jianquan Liu & Changxin Zhou, 2022. "Simulation Research on Thermal Deviation in 700 °C Ultra-Supercritical Boiler," Energies, MDPI, vol. 15(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7596-:d:942431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yacheng & Fan, Weidong & Li, Yu, 2016. "Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale, tangentially fired pulverized-coal boiler," Applied Energy, Elsevier, vol. 177(C), pages 323-334.
    2. Chen, Shinan & He, Boshu & He, Di & Cao, Yang & Ding, Guangchao & Liu, Xuan & Duan, Zhipeng & Zhang, Xin & Song, Jingge & Li, Xuezheng, 2017. "Numerical investigations on different tangential arrangements of burners for a 600 MW utility boiler," Energy, Elsevier, vol. 122(C), pages 287-300.
    3. Zhou, Jing & Zhu, Meng & Xu, Kai & Su, Sheng & Tang, Yifang & Hu, Song & Wang, Yi & Xu, Jun & He, Limo & Xiang, Jun, 2020. "Key issues and innovative double-tangential circular boiler configurations for the 1000 MW coal-fired supercritical carbon dioxide power plant," Energy, Elsevier, vol. 199(C).
    4. Wu, Xiaofeng & Fan, Weidong & Liu, Yacheng & Bian, Bao, 2019. "Numerical simulation research on the unique thermal deviation in a 1000 MW tower type boiler," Energy, Elsevier, vol. 173(C), pages 1006-1020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
    2. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
    3. Li, Zixiang & Miao, Zhengqing & Qiao, Xinqi, 2023. "Effects of structural parameters of a novel burner scheme with annularly combined multiple airflows on performance of a 660 MW tangentially fired boiler," Energy, Elsevier, vol. 280(C).
    4. Li, Zixiang & Miao, Zhengqing & Han, Baoju & Qiao, Xinqi, 2022. "Effects of the number of wall mounted burners on performance of a 660 MW tangentially fired lignite boiler with annularly combined multiple airflows," Energy, Elsevier, vol. 255(C).
    5. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Effects of momentum ratio and velocity difference on combustion performance in lignite-fired pulverized boiler," Energy, Elsevier, vol. 165(PA), pages 825-839.
    6. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    7. Yuan, Zhenhua & Chen, Zhichao & Zhang, Bo & Gao, Xuelin & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation," Energy, Elsevier, vol. 264(C).
    8. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "Low load performance of tangentially-fired boiler with annularly combined multiple airflows," Energy, Elsevier, vol. 224(C).
    9. Wei, Daining & Zhang, Zhichao & Wu, Lining & Wang, Tao & Sun, Baomin, 2023. "Ammonia blend ratio impact on combustion characteristics and NOx emissions during co-firing with sludge and coal in a utility boiler," Energy, Elsevier, vol. 283(C).
    10. Chen, Xi & Zhong, Wenqi & Li, Tianyu, 2023. "Fast prediction of temperature and chemical species distributions in pulverized coal boiler using POD reduced-order modeling for CFD," Energy, Elsevier, vol. 276(C).
    11. Chen, Zhichao & Yuan, Zhenhua & Zhang, Bo & Qiao, Yanyu & Li, Jiawei & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of secondary air mass flow rate ratio on the slagging characteristics of the pre-combustion chamber in industrial pulverized coal-fired boiler," Energy, Elsevier, vol. 251(C).
    12. Bartłomiej Hernik, 2020. "Numerical Research of the Modification of the Combustion System in the OP 650 Boiler," Energies, MDPI, vol. 13(3), pages 1-22, February.
    13. Bartłomiej Hernik, 2022. "Numerical Research of Flue Gas Denitrification Using the SNCR Method in an OP 650 Boiler," Energies, MDPI, vol. 15(9), pages 1-21, May.
    14. Zhong, Yu-Xiu & Wang, Xin & Xu, Gang & Ning, Xinyu & Zhou, Lin & Tang, Wen & Wang, Ming-Hao & Wang, Tong & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler," Energy, Elsevier, vol. 275(C).
    15. Wu, Xiaofeng & Fan, Weidong & Liu, Yacheng & Bian, Bao, 2019. "Numerical simulation research on the unique thermal deviation in a 1000 MW tower type boiler," Energy, Elsevier, vol. 173(C), pages 1006-1020.
    16. Kanmaniraja Radhakrishnan & Jun Su Park, 2024. "Flow and Heat Transfer Characteristics of Superheater Tube of a Pulverized Coal-Fired Boiler Using Conjugate Heat Transfer Modeling," Energies, MDPI, vol. 17(5), pages 1-20, February.
    17. Zeng, Guang & Zhou, Anqi & Fu, Jinming & Ji, Yang, 2022. "Experimental and numerical investigations on NOx formation and reduction mechanisms of pulverized-coal stereo-staged combustion," Energy, Elsevier, vol. 261(PB).
    18. Pei Li & Ting Bao & Jian Guan & Zifu Shi & Zengxiao Xie & Yonggang Zhou & Wei Zhong, 2023. "Computational Analysis of Tube Wall Temperature of Superheater in 1000 MW Ultra-Supercritical Boiler Based on the Inlet Thermal Deviation," Energies, MDPI, vol. 16(3), pages 1-15, February.
    19. Hyunbin Jo & Kiseop Kang & Jongkeun Park & Changkook Ryu & Hyunsoo Ahn & Younggun Go, 2019. "Optimization of Air Distribution to Reduce NOx Emission and Unburned Carbon for the Retrofit of a 500 MWe Tangential-Firing Coal Boiler," Energies, MDPI, vol. 12(17), pages 1-20, August.
    20. Ti, Shuguang & Kuang, Min & Wang, Haopeng & Xu, Guangyin & Niu, Cong & Liu, Yannan & Wang, Zhenfeng, 2020. "Experimental combustion characteristics and NOx emissions at 50% of the full load for a 600-MWe utility boiler: Effects of the coal feed rate for various mills," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7596-:d:942431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.