IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp1036-1053.html
   My bibliography  Save this article

Full-scale CFD investigation of gas-particle flow, interactions and combustion in tangentially fired pulverized coal furnace

Author

Listed:
  • Belošević, Srdjan
  • Tomanović, Ivan
  • Crnomarković, Nenad
  • Milićević, Aleksandar

Abstract

Investigations suggest the need for better understanding of reactive gas-particle turbulent flow phenomena in full-scale energy systems. Numerical study was done in 350 MWe utility boiler tangentially fired furnace to clarify selected issues, such as turbulence modulation, particles dispersion, energy transfer between phases, combustion process and flame, by using an in-house developed combustion code. Numerical experiments demonstrated remarkable complexity of flow and interphase exchange. Maximal decrease in average turbulence kinetic energy of 33% due to dispersed phase was predicted for representative monodispersed coal; augmentation obtained for large particles could become attenuation due to the particles size change during combustion. Grinding fineness of polydispersed coal affected the flow, combustion and flame considerably. Fine grinding (R90 = 48.40%) provided ascending flame, higher furnace exit temperature and decrease in turbulence energy, compared with coarse grinding (R90 = 73.85%). Combustion of each particle size class of coal is completed at different vertical levels, influencing the flame position. Diagrams based on numerical predictions were proposed to enable efficient estimations of combustion and flame characteristics in the case-study furnace, for various coal qualities and mass fractions and changed distributions of coal particle size classes over the burner tiers, while necessity for further investigation was pointed out as well.

Suggested Citation

  • Belošević, Srdjan & Tomanović, Ivan & Crnomarković, Nenad & Milićević, Aleksandar, 2019. "Full-scale CFD investigation of gas-particle flow, interactions and combustion in tangentially fired pulverized coal furnace," Energy, Elsevier, vol. 179(C), pages 1036-1053.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:1036-1053
    DOI: 10.1016/j.energy.2019.05.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219309351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuang, Min & Zhu, Qunyi & Ling, Zhongqian & Ti, Shuguang & Li, Zhengqi, 2017. "Improving gas/particle flow deflection and asymmetric combustion of a 600 MWe supercritical down-fired boiler by increasing its upper furnace height," Energy, Elsevier, vol. 127(C), pages 581-593.
    2. Liu, Chunlong & Li, Zhengqi & Jing, Xinjing & Xie, Yiquan & Zhang, Qinghua & Zong, Qiudong, 2014. "Experimental investigation into gas/particle flow in a down-fired 350 MWe supercritical utility boiler at different over-fire air ratios," Energy, Elsevier, vol. 64(C), pages 771-778.
    3. Liu, Chunlong & Li, Zhengqi & Zeng, Lingyan & Zhang, Qinghua & Hu, Richa & Zhang, Xusheng & Guo, Liang & Huang, Yong & Yang, Xianwei & Chen, Liheng, 2016. "Gas/particle two-phase flow characteristics of a down-fired 350 MWe supercritical utility boiler at different tertiary air ratios," Energy, Elsevier, vol. 102(C), pages 54-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pieter Rousseau & Ryno Laubscher & Brad Travis Rawlins, 2023. "Heat Transfer Analysis Using Thermofluid Network Models for Industrial Biomass and Utility Scale Coal-Fired Boilers," Energies, MDPI, vol. 16(4), pages 1-49, February.
    2. Straka, Robert & Bernasowski, Mikolaj & Klimczyk, Arkadiusz & Stachura, Ryszard & Svyetlichnyy, Dmytro, 2020. "Prediction of raceway shape in zinc blast furnace under the different blast parameters," Energy, Elsevier, vol. 207(C).
    3. Milićević, Aleksandar & Belošević, Srdjan & Crnomarković, Nenad & Tomanović, Ivan & Tucaković, Dragan, 2020. "Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 MWe boiler furnace," Applied Energy, Elsevier, vol. 260(C).
    4. Xue, Wenyuan & Lu, Yichen & Wang, Zhi & Cao, Shengxian & Sui, Mengxuan & Yang, Yuan & Li, Jiyuan & Xie, Yubin, 2024. "Reconstructing near-water-wall temperature in coal-fired boilers using improved transfer learning and hidden layer configuration optimization," Energy, Elsevier, vol. 294(C).
    5. Askarova, Aliya & Georgiev, Aleksandar & Bolegenova, Saltanat & Beketayeva, Meruyert & Maximov, Valeriyu & Bolegenova, Symbat, 2022. "Computational modeling of pollutants in furnaces of pulverized coal boilers of the republic of Kazakhstan," Energy, Elsevier, vol. 258(C).
    6. Chen, Xi & Zhong, Wenqi & Li, Tianyu, 2023. "Fast prediction of temperature and chemical species distributions in pulverized coal boiler using POD reduced-order modeling for CFD," Energy, Elsevier, vol. 276(C).
    7. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    8. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chunlong & Li, Zhengqi & Zeng, Lingyan & Zhang, Qinghua & Hu, Richa & Zhang, Xusheng & Guo, Liang & Huang, Yong & Yang, Xianwei & Chen, Liheng, 2016. "Gas/particle two-phase flow characteristics of a down-fired 350 MWe supercritical utility boiler at different tertiary air ratios," Energy, Elsevier, vol. 102(C), pages 54-64.
    2. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    3. Wang, Yanhong & Li, Xiaoyu & Mao, Tianqin & Hu, Pengfei & Li, Xingcan & GuanWang,, 2022. "Mechanism modeling of optimal excess air coefficient for operating in coal fired boiler," Energy, Elsevier, vol. 261(PA).
    4. Kuang, Min & Li, Zhengqi, 2014. "Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers," Energy, Elsevier, vol. 69(C), pages 144-178.
    5. Zhou, Ling & Han, Chen & Bai, Ling & Li, Wei & El-Emam, Mahmoud Ahmed & Shi, Weidong, 2020. "CFD-DEM bidirectional coupling simulation and experimental investigation of particle ejections and energy conversion in a spouted bed," Energy, Elsevier, vol. 211(C).
    6. Zhang, Lifeng & Zhang, Sijia, 2023. "Analysis and identification of gas-liquid two-phase flow pattern based on multi-scale power spectral entropy and pseudo-image encoding," Energy, Elsevier, vol. 282(C).
    7. Yuan, Zhenhua & Chen, Zhichao & Wu, Xiaolan & Zhang, Ning & Bian, Liguo & Qiao, Yanyu & Li, Jiawei & Li, Zhengqi, 2022. "An innovative low-NOx combustion technology for industrial pulverized coal boiler: Gas-particle flow characteristics with different radial-air-staged levels," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:1036-1053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.