IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v186y2019ics0360544219315166.html
   My bibliography  Save this article

Numerical investigation of the combustion process for design and non-design coal in T-shaped boilers with swirl burners

Author

Listed:
  • Gil, Andrei V.
  • Zavorin, Aleksandr S.
  • Starchenko, Aleksandr V.

Abstract

In this paper, we present the results of a numerical investigation into the combustion process in a boiler furnace chamber with swirl burners using design coal (non-coking coal) and substitute coal (coking coal). The paper describes the development of a three-dimensional combustion model for coal burning in a boiler furnace chamber. The utility boiler operates on high-ash non-coking coal with an ash content of 41.94%. Due to the high ash content in the design coal, most of it is released into the atmosphere, which negatively affects the environment and the surrounding area. We suggest that this coal by a different coal with a lower ash content. It was found that during the combustion of substitute coal at the level of burner, the temperature in the entire cross section increases by 200 K, due to more intense fuel burnout at the outer boundary of the burner torches. It is found that the substitute coal may be burned in the boiler furnace chamber and can provide reliable operation if the swirl burner angle is set at 50° for the secondary air and at 45° for the fuel-air mixture.

Suggested Citation

  • Gil, Andrei V. & Zavorin, Aleksandr S. & Starchenko, Aleksandr V., 2019. "Numerical investigation of the combustion process for design and non-design coal in T-shaped boilers with swirl burners," Energy, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315166
    DOI: 10.1016/j.energy.2019.07.174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219315166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    2. Sadatakhavi, SeyedMohammadReza & Tabejamaat, Sadegh & EiddiAttarZade, Masoud & Kankashvar, Benyamin & Nozari, MohammadReza, 2021. "Numerical and experimental study of the effects of fuel injection and equivalence ratio in a can micro-combustor at atmospheric condition," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.