IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4087-d830146.html
   My bibliography  Save this article

Generic and Open-Source Exergy Analysis—Extending the Simulation Framework TESPy

Author

Listed:
  • Francesco Witte

    (Department of Energy and Biotechnology, Flensburg University of Applied Sciences, Kanzleistraße 91-93, 24943 Flensburg, Germany
    Center for Sustainable Energy Systems (ZNES), 24943 Flensburg, Germany)

  • Mathias Hofmann

    (Institute for Energy Engineering, Technische Universität Berlin, Marchstraße 18, 10587 Berlin, Germany)

  • Julius Meier

    (Institute for Energy Engineering, Technische Universität Berlin, Marchstraße 18, 10587 Berlin, Germany)

  • Ilja Tuschy

    (Department of Energy and Biotechnology, Flensburg University of Applied Sciences, Kanzleistraße 91-93, 24943 Flensburg, Germany
    Center for Sustainable Energy Systems (ZNES), 24943 Flensburg, Germany)

  • George Tsatsaronis

    (Institute for Energy Engineering, Technische Universität Berlin, Marchstraße 18, 10587 Berlin, Germany)

Abstract

Exergy-based methods support the identification of thermodynamic inefficiencies and the discovery of optimization potentials in thermal engineering applications. Although a large variety of simulation software is available in this field, most do not offer an integrated solution for exergy analysis. While there are commercial products on the market with such capabilities, their access for research and educational purposes is limited. The presented open-source software offers an integrated and fully automated exergy analysis tool for thermal conversion processes. In a first step, physical exergy is implemented, and the tool is then applied to three different example plants to highlight its capabilities and validate the implementation: A solar thermal power plant, a supercritical CO 2 power cycle, and an air refrigeration cycle. The respective models and the results of the analyses are presented briefly. By providing the results in modern data structures, they are easily accessible and postprocessible. Future work will include chemical exergy to enable analyses of applications with conversion of matter. Additionally, the implementation of the exergoeconomic analysis and optimization is envisaged.

Suggested Citation

  • Francesco Witte & Mathias Hofmann & Julius Meier & Ilja Tuschy & George Tsatsaronis, 2022. "Generic and Open-Source Exergy Analysis—Extending the Simulation Framework TESPy," Energies, MDPI, vol. 15(11), pages 1-27, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4087-:d:830146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Querol, E. & Gonzalez-Regueral, B. & Ramos, A. & Perez-Benedito, J.L., 2011. "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, Elsevier, vol. 36(2), pages 964-974.
    2. Kameyama, H. & Yoshida, K. & Yamauchi, S. & Fueki, K., 1982. "Evaluation of reference exergies for the elements," Applied Energy, Elsevier, vol. 11(1), pages 69-83, May.
    3. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    4. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    5. Ghannadzadeh, Ali & Thery-Hetreux, Raphaële & Baudouin, Olivier & Baudet, Philippe & Floquet, Pascal & Joulia, Xavier, 2012. "General methodology for exergy balance in ProSimPlus® process simulator," Energy, Elsevier, vol. 44(1), pages 38-59.
    6. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    7. Manzolini, Giampaolo & Giostri, Andrea & Saccilotto, Claudio & Silva, Paolo & Macchi, Ennio, 2011. "Development of an innovative code for the design of thermodynamic solar power plants part A: Code description and test case," Renewable Energy, Elsevier, vol. 36(7), pages 1993-2003.
    8. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    9. Chen, Chaofan & Witte, Francesco & Tuschy, Ilja & Kolditz, Olaf & Shao, Haibing, 2022. "Parametric optimization and comparative study of an organic Rankine cycle power plant for two-phase geothermal sources," Energy, Elsevier, vol. 252(C).
    10. Stepanov, V.S., 1995. "Chemical energies and exergies of fuels," Energy, Elsevier, vol. 20(3), pages 235-242.
    11. Marius Zoder & Janosch Balke & Mathias Hofmann & George Tsatsaronis, 2018. "Simulation and Exergy Analysis of Energy Conversion Processes Using a Free and Open-Source Framework—Python-Based Object-Oriented Programming for Gas- and Steam Turbine Cycles," Energies, MDPI, vol. 11(10), pages 1-19, September.
    12. Abdollahi-Demneh, Farzad & Moosavian, Mohammad Ali & Omidkhah, Mohammad Reza & Bahmanyar, Hossein, 2011. "Calculating exergy in flowsheeting simulators: A HYSYS implementation," Energy, Elsevier, vol. 36(8), pages 5320-5327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jelić, Marko & Batić, Marko & Krstić, Aleksandra & Bottarelli, Michele & Mainardi, Elena, 2023. "Comparative analysis of metaheuristic optimization approaches for multisource heat pump operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Tsatsaronis, George, 2024. "The future of exergy-based methods," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    2. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    3. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    4. Bisio, G & Rubatto, G & Martini, R, 2000. "Heat transfer, energy saving and pollution control in UHP electric-arc furnaces," Energy, Elsevier, vol. 25(11), pages 1047-1066.
    5. Gollangi, Raju & K, NagamalleswaraRao, 2022. "Energy, exergy analysis of conceptually designed monochloromethane production process from hydrochlorination of methanol," Energy, Elsevier, vol. 239(PA).
    6. Nguyen, Tuong-Van & Jacyno, Tomasz & Breuhaus, Peter & Voldsund, Mari & Elmegaard, Brian, 2014. "Thermodynamic analysis of an upstream petroleum plant operated on a mature field," Energy, Elsevier, vol. 68(C), pages 454-469.
    7. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation," Applied Energy, Elsevier, vol. 192(C), pages 33-58.
    8. Tan, Ling Min & Arbabi, Hadi & Brockway, Paul E. & Densley Tingley, Danielle & Mayfield, Martin, 2019. "An ecological-thermodynamic approach to urban metabolism: Measuring resource utilization with open system network effectiveness analysis," Applied Energy, Elsevier, vol. 254(C).
    9. Zheng, Danxing & Wu, Zhaohui & Huang, Weijia & Chen, Youhui, 2017. "Energy quality factor of materials conversion and energy quality reference system," Applied Energy, Elsevier, vol. 185(P1), pages 768-778.
    10. Amelio, A. & Van de Voorde, T. & Creemers, C. & Degrève, J. & Darvishmanesh, S. & Luis, P. & Van der Bruggen, B., 2016. "Comparison between exergy and energy analysis for biodiesel production," Energy, Elsevier, vol. 98(C), pages 135-145.
    11. Nguyen, Tuong-Van & Voldsund, Mari & Elmegaard, Brian & Ertesvåg, Ivar Ståle & Kjelstrup, Signe, 2014. "On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing," Energy, Elsevier, vol. 73(C), pages 264-281.
    12. Olusegun David Samuel & Peter A. Aigba & Thien Khanh Tran & H. Fayaz & Carlo Pastore & Oguzhan Der & Ali Erçetin & Christopher C. Enweremadu & Ahmad Mustafa, 2023. "Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    13. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    14. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    15. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    16. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    17. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    18. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    19. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    20. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4087-:d:830146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.