IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipbs0360544220322672.html
   My bibliography  Save this article

Experimental air/particle flow characteristics of an 80,000 Nm3/h fly ash entrained-flow gasifier with different multi-burner arrangements

Author

Listed:
  • Fang, Neng
  • Li, Zhengqi
  • Liu, Shuxuan
  • Xie, Cheng
  • Zeng, Lingyan
  • Chen, Zhichao

Abstract

A novel burner arrangement for entrained-flow pulverized coal gasifier with multiple low-set burners, which burners are arranged to be counter-biased, is proposed aimed at mitigating high-temperature corrosion to the wall. To verify the characteristics of this improvement in an 80,000 Nm3/h fly ash entrained-flow gasifier, experiments were conducted on the model to investigate the impact of six burners being co-biased, opposed and counter-biased on the air/particle flow field by using a particle dynamics anemometer. The results show that, on the horizontal cross-section passing through burner centerlines with co-biased burners, opposed burners and counter-biased burners, the radius of mixing zone is 0.196, 0.16 and 0.174; the ratio of total particle volume flux in the near-wall region to the total particle volume flux in the measurement zone was 76.5%, 26.1% and 57.8%, respectively. On the vertical cross-section above burner outlet, the radius of central recirculation zone with co-biased burners remains to expand to 0.88 while that of counter-biased burners gradually shrinks to 0.33. There is no central recirculation zone under opposed burners; air and particle swirl numbers are close to zero. This study shows that new burner arrangement could ease high-temperature corrosion to gasifier wall and strengthens mixing of burner jets.

Suggested Citation

  • Fang, Neng & Li, Zhengqi & Liu, Shuxuan & Xie, Cheng & Zeng, Lingyan & Chen, Zhichao, 2021. "Experimental air/particle flow characteristics of an 80,000 Nm3/h fly ash entrained-flow gasifier with different multi-burner arrangements," Energy, Elsevier, vol. 215(PB).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220322672
    DOI: 10.1016/j.energy.2020.119160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220322672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sang Shin Park & Hyo Jae Jeong & Jungho Hwang, 2015. "3-D CFD Modeling for Parametric Study in a 300-MWe One-Stage Oxygen-Blown Entrained-Bed Coal Gasifier," Energies, MDPI, vol. 8(5), pages 1-21, May.
    2. Zhou, Hua & Xie, Taili & You, Fengqi, 2018. "On-line simulation and optimization of a commercial-scale shell entrained-flow gasifier using a novel dynamic reduced order model," Energy, Elsevier, vol. 149(C), pages 516-534.
    3. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    4. Tamošiūnas, Andrius & Gimžauskaitė, Dovilė & Uscila, Rolandas & Aikas, Mindaugas, 2019. "Thermal arc plasma gasification of waste glycerol to syngas," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Lee, Hyeon-Hui & Lee, Jae-Chul & Joo, Yong-Jin & Oh, Min & Lee, Chang-Ha, 2014. "Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process," Applied Energy, Elsevier, vol. 131(C), pages 425-440.
    6. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Zeng, Lingyan & Chen, Zhichao & Zhang, Bin, 2020. "The application of fly ash gasification for purifying the raw syngas in an industrial-scale entrained flow gasifier," Energy, Elsevier, vol. 195(C).
    7. Fang, Neng & Li, Zhengqi & Wang, Jiaquan & Zhang, Bin & Zeng, Lingyan & Chen, Zhichao & Wang, Haopeng & Liu, Xiaoying & Zhang, Xiaoyan, 2018. "Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner," Energy, Elsevier, vol. 165(PB), pages 432-441.
    8. Cao, Zhikai & Li, Tao & Zhang, Quancong & Zhou, Hua & Song, Can & You, Fengqi, 2018. "Systems modeling, simulation and analysis for robust operations and improved design of entrained-flow pulverized coal gasifiers," Energy, Elsevier, vol. 148(C), pages 941-964.
    9. Fan, Weidong & Li, Youyi & Lin, Zhengchun & Zhang, Mingchuan, 2010. "PDA research on a novel pulverized coal combustion technology for a large utility boiler," Energy, Elsevier, vol. 35(5), pages 2141-2148.
    10. Zeng, Lingyan & Li, Zhengqi & Zhao, Guangbo & Li, Jing & Zhang, Fucheng & Shen, Shanping & Chen, Lizhe, 2011. "The influence of swirl burner structure on the gas/particle flow characteristics," Energy, Elsevier, vol. 36(10), pages 6184-6194.
    11. Chen, Chih-Jung & Hung, Chen-I. & Chen, Wei-Hsin, 2012. "Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier," Applied Energy, Elsevier, vol. 100(C), pages 218-228.
    12. Andrius Tamošiūnas & Dovilė Gimžauskaitė & Mindaugas Aikas & Rolandas Uscila & Marius Praspaliauskas & Justas Eimontas, 2019. "Gasification of Waste Cooking Oil to Syngas by Thermal Arc Plasma," Energies, MDPI, vol. 12(13), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Yue & Li, Zhengqi & Jiang, Guangfei & Huang, Chunchao & Chen, Zhichao, 2024. "Study on mixing performance of atmospheric entrained flow gasification burner using fine ash as feedstock," Energy, Elsevier, vol. 292(C).
    2. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    3. Fang, Neng & Zhang, Pan & Wang, Weiliang & Wang, Qian & Lyu, Junfu & Zhang, Hai & Yue, Guangxi, 2022. "Effects of coal particle size on the two-phase flow and slagging performance in a swirl burner," Energy, Elsevier, vol. 238(PB).
    4. Li, Zhengqi & Liu, Zheng & Huang, Haolin & Du, He & Chen, Zhichao, 2024. "The effects of key parameters on the gas/particle flows characteristics in the furnace of a Foster Wheeler down-fired boiler retrofitted with novel low-load stable combustion technology," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    2. Lu, Yue & Li, Zhengqi & Jiang, Guangfei & Huang, Chunchao & Chen, Zhichao, 2024. "Study on mixing performance of atmospheric entrained flow gasification burner using fine ash as feedstock," Energy, Elsevier, vol. 292(C).
    3. Fang, Neng & Li, Zhengqi & Wang, Jiaquan & Zhang, Bin & Zeng, Lingyan & Chen, Zhichao & Wang, Haopeng & Liu, Xiaoying & Zhang, Xiaoyan, 2018. "Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner," Energy, Elsevier, vol. 165(PB), pages 432-441.
    4. Kim, Mukyeong & Ye, Insoo & Jo, Hyunbin & Ryu, Changkook & Kim, Bongkeun & Lee, Jeongsoo, 2020. "New reduced-order model optimized for online dynamic simulation of a Shell coal gasifier," Applied Energy, Elsevier, vol. 263(C).
    5. Wang, Kangcheng & Zhang, Jie & Shang, Chao & Huang, Dexian, 2021. "Operation optimization of Shell coal gasification process based on convolutional neural network models," Applied Energy, Elsevier, vol. 292(C).
    6. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Zeng, Lingyan & Chen, Zhichao & Zhang, Bin, 2020. "The application of fly ash gasification for purifying the raw syngas in an industrial-scale entrained flow gasifier," Energy, Elsevier, vol. 195(C).
    7. Cao, Zhikai & Wu, Qi & Zhou, Hua & Chen, Pingping & You, Fengqi, 2020. "Dynamic modeling, systematic analysis, and operation optimization for shell entrained-flow heavy residue gasifier," Energy, Elsevier, vol. 197(C).
    8. Wang, Haopeng & Chen, Zhichao & Zhang, Bin & Zeng, Lingyan & Li, Zhengqi & Zhang, Xiaoyan & Fang, Neng & Liu, Xiaoying, 2019. "Thermal-calculation method for entrained-flow coal gasifiers," Energy, Elsevier, vol. 166(C), pages 373-379.
    9. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    10. Chen, Xiaodong & Kong, Lingxue & Bai, Jin & Dai, Xin & Li, Huaizhu & Bai, Zongqing & Li, Wen, 2017. "The key for sodium-rich coal utilization in entrained flow gasifier: The role of sodium on slag viscosity-temperature behavior at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 1241-1249.
    11. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
    12. Wang, Qingxiang & Chen, Zhichao & Li, Liankai & Zeng, Lingyan & Li, Zhengqi, 2020. "Achievement in ultra-low-load combustion stability for an anthracite- and down-fired boiler after applying novel swirl burners: From laboratory experiments to industrial applications," Energy, Elsevier, vol. 192(C).
    13. Liu, Chunlong & Li, Zhengqi & Jing, Xinjing & Xie, Yiquan & Zhang, Qinghua & Zong, Qiudong, 2014. "Experimental investigation into gas/particle flow in a down-fired 350 MWe supercritical utility boiler at different over-fire air ratios," Energy, Elsevier, vol. 64(C), pages 771-778.
    14. Zhou, Hua & Xie, Taili & You, Fengqi, 2018. "On-line simulation and optimization of a commercial-scale shell entrained-flow gasifier using a novel dynamic reduced order model," Energy, Elsevier, vol. 149(C), pages 516-534.
    15. Cao, Zhikai & Li, Tao & Zhang, Quancong & Zhou, Hua & Song, Can & You, Fengqi, 2018. "Systems modeling, simulation and analysis for robust operations and improved design of entrained-flow pulverized coal gasifiers," Energy, Elsevier, vol. 148(C), pages 941-964.
    16. Chu, C. & Boré, A. & Liu, X.W. & Cui, J.C. & Wang, P. & Liu, X. & Chen, G.Y. & Liu, B. & Ma, W.C. & Lou, Z.Y. & Tao, Y. & Bary, A., 2022. "Modeling the impact of some independent parameters on the syngas characteristics during plasma gasification of municipal solid waste using artificial neural network and stepwise linear regression meth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Sunel Kumar & Zhihua Wang & Yong He & Yanqun Zhu & Kefa Cen, 2022. "Numerical Analysis for Coal Gasification Performance in a Lab-Scale Gasifier: Effects of the Wall Temperature and Oxygen/Coal Ratio," Energies, MDPI, vol. 15(22), pages 1-15, November.
    18. Jeong, Hyo Jae & Seo, Dong Kyun & Hwang, Jungho, 2014. "CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model," Applied Energy, Elsevier, vol. 123(C), pages 29-36.
    19. Chu, Chu & Wang, Ping & Boré, Abdoulaye & Ma, Wenchao & Chen, Guanyi & Wang, Pan, 2023. "Thermal plasma co-gasification of polyvinylchloride and biomass mixtures under steam atmospheres: Gasification characteristics and chlorine release behavior," Energy, Elsevier, vol. 262(PB).
    20. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220322672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.