IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v234y2024ics0960148124012618.html
   My bibliography  Save this article

Corrosion-induced changes in bio-oil aging: A gas chromatography exploration

Author

Listed:
  • Wang, Haoxiang
  • Liu, Jing

Abstract

Understanding the interactions between metals, corrosion products, and bio-oil (BO) is crucial for safe and efficient BO operations. This study explored BO aging and BO + steel (carbon steel (CS) and stainless steel (SS)) immersion at 80 °C for 168 h, alongside experiments adding synthetic Fe2O3 and Cr2O3 powders to BO. Gas generated was analyzed via gas chromatography (GC). Results showed 80 °C was an optimal pre-heating temperature for BO without gas evolution. BO aging at up to 220 °C for 24 h increased CO2 and CO evolutions. CS immersion at 80 °C produced more H2 and CO2 than those at 50 °C, due to higher corrosion rates. The BO + Fe2O3 trial released less H2 but more CO2 compared to BO + CS immersion, due to internal BO reactions catalyzed by Fe2O3. BO + SS304L and BO + Cr2O3 trials showed similar H2 and CO2 production, highlighting the catalytic effect of Cr2O3. Leached Fe ions in BO formed chelate complexes with organic compounds, causing phase separation. These findings have significant implications for producing renewable biofuels via BO co-processing operations by emphasizing the need to optimize preheating temperatures, validate the compatibility of construction materials, and implement safety measures to mitigate gas accumulation risks.

Suggested Citation

  • Wang, Haoxiang & Liu, Jing, 2024. "Corrosion-induced changes in bio-oil aging: A gas chromatography exploration," Renewable Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012618
    DOI: 10.1016/j.renene.2024.121193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haoxiang & Liu, Jing, 2024. "Electrochemical corrosion study of carbon steel in bio-oil environments," Renewable Energy, Elsevier, vol. 221(C).
    2. Nahak, B.K. & Preetam, S. & Sharma, Deepa & Shukla, S.K. & Syväjärvi, Mikael & Toncu, Dana-Cristina & Tiwari, Ashutosh, 2022. "Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Yang, Zixu & Kumar, Ajay & Huhnke, Raymond L., 2015. "Review of recent developments to improve storage and transportation stability of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 859-870.
    4. Wu, Le & Yang, Yong & Yan, Ting & Wang, Yuqi & Zheng, Lan & Qian, Kun & Hong, Furong, 2020. "Sustainable design and optimization of co-processing of bio-oil and vacuum gas oil in an existing refinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Jiheon Jun & Yi-Feng Su & James R. Keiser & John E. Wade & Michael D. Kass & Jack R. Ferrell & Earl Christensen & Mariefel V. Olarte & Dino Sulejmanovic, 2022. "Corrosion Compatibility of Stainless Steels and Nickel in Pyrolysis Biomass-Derived Oil at Elevated Storage Temperatures," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    6. Chen, Dengyu & Zhou, Jianbin & Zhang, Qisheng & Zhu, Xifeng, 2014. "Evaluation methods and research progresses in bio-oil storage stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 69-79.
    7. Yang, Xinyu & Shao, Shanshan & Li, Xiaohua & Tang, Dong, 2023. "Catalytic transfer hydrogenation of bio-oil over biochar-based CuO catalyst using methanol as hydrogen donor," Renewable Energy, Elsevier, vol. 211(C), pages 21-30.
    8. Cai, Wenfei & Kang, Ning & Jang, Moon Ki & Sun, Chen & Liu, Ronghou & Luo, Zhongyang, 2019. "Long term storage stability of bio-oil from rice husk fast pyrolysis," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Fang, Shuqi & Jiang, Luyao & Li, Pan & Bai, Jing & Chang, Chun, 2020. "Study on pyrolysis products characteristics of medical waste and fractional condensation of the pyrolysis oil," Energy, Elsevier, vol. 195(C).
    3. Wang, Haoxiang & Liu, Jing, 2024. "Electrochemical corrosion study of carbon steel in bio-oil environments," Renewable Energy, Elsevier, vol. 221(C).
    4. Wang, Chu & Ding, Haozhi & Zhang, Yiming & Zhu, Xifeng, 2020. "Analysis of property variation and stability on the aging of bio-oil from fractional condensation," Renewable Energy, Elsevier, vol. 148(C), pages 720-728.
    5. Lin, Bo-Jhih & Chen, Wei-Hsin & Budzianowski, Wojciech M. & Hsieh, Cheng-Ting & Lin, Pei-Hsun, 2016. "Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers," Applied Energy, Elsevier, vol. 178(C), pages 746-757.
    6. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    7. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. de Luna, Mark Daniel G. & Cruz, Louie Angelo D. & Chen, Wei-Hsin & Lin, Bo-Jhih & Hsieh, Tzu-Hsien, 2017. "Improving the stability of diesel emulsions with high pyrolysis bio-oil content by alcohol co-surfactants and high shear mixing strategies," Energy, Elsevier, vol. 141(C), pages 1416-1428.
    9. Si, Buchun & Watson, Jamison & Wang, Zixin & Wang, Tengfei & Acero Triana, Juan S. & Zhang, Yuanhui, 2024. "Storage stability of biocrude oil fractional distillates derived from the hydrothermal liquefaction of food waste," Renewable Energy, Elsevier, vol. 220(C).
    10. Zhang, Shuping & Su, Yinhai & Xu, Dan & Zhu, Shuguang & Zhang, Houlei & Liu, Xinzhi, 2018. "Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk," Energy, Elsevier, vol. 149(C), pages 804-813.
    11. Chen, Dongyu & Gao, Dongxiao & Capareda, Sergio C. & E, Shuang & Jia, Fengrui & Wang, Ying, 2020. "Influences of hydrochloric acid washing on the thermal decomposition behavior and thermodynamic parameters of sweet sorghum stalk," Renewable Energy, Elsevier, vol. 148(C), pages 1244-1255.
    12. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Wu, Le & Yan, Ting & Lei, Qingyu & Zhang, Shuai & Wang, Yuqi & Zheng, Lan, 2022. "Operational optimization of co-processing of heavy oil and bio-oil based on the coordination of desulfurization and deoxygenation," Energy, Elsevier, vol. 239(PE).
    14. Chen, Chao & Liang, Rui & Zhu, Jingyu & Tao, Junyu & Lv, Xuebin & Yan, Beibei & Cheng, Zhanjun & Chen, Guanyi, 2024. "Combination of integrated machine learning model frameworks and infrared spectroscopy towards fast and interpretable characterization of model pyrolysis oil," Renewable Energy, Elsevier, vol. 236(C).
    15. Ribeiro, Luiz Augusto Badan & Martins, Robson Cristiano & Mesa-Pérez, Juan Miguel & Bizzo, Waldir Antonio, 2019. "Study of bio-oil properties and ageing through fractionation and ternary mixtures with the heavy fraction as the main component," Energy, Elsevier, vol. 169(C), pages 344-355.
    16. Králík, T. & Knápek, J. & Vávrová, K. & Outrata, D. & Romportl, D. & Horák, M. & Jandera, J., 2023. "Ecosystem services and economic competitiveness of perennial energy crops in the modelling of biomass potential – A case study of the Czech Republic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    17. Georgescu, Irina Alexandra & Oprea, Simona-Vasilica & Bâra, Adela, 2024. "Investigating the relationship between macroeconomic indicators, renewables and pollution across diverse regions in the globalization era," Applied Energy, Elsevier, vol. 363(C).
    18. Lin, Bo-Jhih & Chen, Wei-Hsin & Hsieh, Tzu-Hsien & Ong, Hwai Chyuan & Show, Pau Loke & Naqvi, Salman Raza, 2019. "Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels," Renewable Energy, Elsevier, vol. 136(C), pages 223-234.
    19. Deng, Wei & Wang, Xuepeng & Syed-Hassan, Syed Shatir A. & Lam, Chun Ho & Hu, Xun & Xiong, Zhe & Han, Hengda & Xu, Jun & Jiang, Long & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2022. "Polymerization during low-temperature electrochemical upgrading of bio-oil: Effects of interactions among bio-oil fractions," Energy, Elsevier, vol. 251(C).
    20. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.