IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220300694.html
   My bibliography  Save this article

A novel thermophotovoltaic optical cavity for improved irradiance uniformity and system performance

Author

Listed:
  • Zhang, Chao
  • Tang, Liangliang
  • Liu, Yan
  • Liu, Zhuming
  • Liu, Wei
  • Qiu, Kuanrong

Abstract

It has been demonstrated that a single thermophotovoltaic (TPV) cell can produce a high-output power density. In practical applications, many such cells are arrayed to obtain a high level of output. However, the irradiance on the surface of each cell of an array may be different. This nonuniformity causes mismatch loss in the array and reduces the reliability of the cells. To address these problems, a novel TPV optical cavity with reflectors was proposed to improve the irradiance uniformity of the cell array. A model TPV system using the proposed cavity was built and evaluated for comparison with traditional systems. TracePro and MATLAB software were used to examine the irradiance uniformity of cell arrays and the electrical performance of TPV systems that incorporate these arrays. Besides system efficiency ηsystem and maximum output power Pmax, several critical parameters degree of uniformity N, network efficiency ηnet, and average cell electric power density Wave, were used to evaluate the performance of the TPV systems. The results indicate that the proposed cavity improved the irradiance uniformity of the TPV cell array, thereby reducing mismatch loss and enhancing system performance, and it did so with a reduced number of cells.

Suggested Citation

  • Zhang, Chao & Tang, Liangliang & Liu, Yan & Liu, Zhuming & Liu, Wei & Qiu, Kuanrong, 2020. "A novel thermophotovoltaic optical cavity for improved irradiance uniformity and system performance," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300694
    DOI: 10.1016/j.energy.2020.116962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220300694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.116962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    2. Jena, Debashisha & Ramana, Vanjari Venkata, 2015. "Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 400-417.
    3. Ferrari, Claudio & Melino, Francesco & Pinelli, Michele & Spina, Pier Ruggero, 2014. "Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences," Applied Energy, Elsevier, vol. 113(C), pages 1717-1730.
    4. Liu, Z. & Qiu, K., 2017. "A TPV power system consisting of a composite radiant burner and combined cells," Energy, Elsevier, vol. 141(C), pages 892-897.
    5. Ghoneim, Adel A. & Al-Hasan, Ahmad Y. & Abdullah, Ali H., 2002. "Economic analysis of photovoltaic-powered solar domestic hot water systems in Kuwait," Renewable Energy, Elsevier, vol. 25(1), pages 81-100.
    6. Xu, Xiaojie & Ye, Hong & Xu, Yexin & Shen, Mingrong & Zhang, Xiaojing & Wu, Xi, 2014. "Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system," Applied Energy, Elsevier, vol. 113(C), pages 924-931.
    7. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    8. Qiu, K. & Hayden, A.C.S., 2012. "Development of a novel cascading TPV and TE power generation system," Applied Energy, Elsevier, vol. 91(1), pages 304-308.
    9. Xuan, Yimin & Chen, Xue & Han, Yuge, 2011. "Design and analysis of solar thermophotovoltaic systems," Renewable Energy, Elsevier, vol. 36(1), pages 374-387.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, K. & Hayden, A.C.S., 2014. "Implementation of a TPV integrated boiler for micro-CHP in residential buildings," Applied Energy, Elsevier, vol. 134(C), pages 143-149.
    2. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    3. Hussain, C.M. Iftekhar & Duffy, Aidan & Norton, Brian, 2020. "Thermophotovoltaic systems for achieving high-solar-fraction hybrid solar-biomass power generation," Applied Energy, Elsevier, vol. 259(C).
    4. Shan, Shiquan & Tian, Jialu & Chen, Binghong & Zhang, Yanwei & Zhou, Zhijun, 2023. "Theoretical and technical analysis of the photo-thermal energy cascade conversion for fuel with high-temperature combustion," Energy, Elsevier, vol. 263(PD).
    5. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).
    6. Wu, H. & Kaviany, M. & Kwon, O.C., 2018. "Thermophotovoltaic power conversion using a superadiabatic radiant burner," Applied Energy, Elsevier, vol. 209(C), pages 392-399.
    7. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    8. Wang, Hao & Peng, Qingguo & Tian, Xinghua & Yan, Feng & Wei, Depeng & Liu, Hui, 2024. "Experimental and numerical investigation on H2-fueled micro-thermophotovoltaic with CH4 and C3H8 blending in a tube fully/partially inserted porous media," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    9. Xu, Xiaojie & Ye, Hong & Xu, Yexin & Shen, Mingrong & Zhang, Xiaojing & Wu, Xi, 2014. "Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system," Applied Energy, Elsevier, vol. 113(C), pages 924-931.
    10. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    11. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).
    13. Li, Guoneng & Zheng, Youqu & Guo, Wenwen & Zhu, Dongya & Tang, Yuanjun, 2020. "Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics," Applied Energy, Elsevier, vol. 272(C).
    14. Sai Krishna, G. & Moger, Tukaram, 2019. "Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 333-348.
    15. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    16. Wang, Yu & Lou, Yi-yi, 2015. "Radiant thermal conversion in 0.53 eV GaInAsSb thermophotovoltaic diode," Renewable Energy, Elsevier, vol. 75(C), pages 8-13.
    17. Tian Zhou & Zhiqiang Sun & Saiwei Li & Huawei Liu & Danqing Yi, 2016. "Design and Optimization of Thermophotovoltaic System Cavity with Mirrors," Energies, MDPI, vol. 9(9), pages 1-11, September.
    18. Daghigh, R. & Ruslan, M.H. & Sopian, K., 2011. "Advances in liquid based photovoltaic/thermal (PV/T) collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4156-4170.
    19. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    20. Cao, Shaowen & Cai, Qilin & Zhang, Yingshi & Zhang, Qi & Ye, Qing & Deng, Weifeng & Wu, Xi, 2023. "Evaluation of spectral regulation by selective emitter and filter under both ideal and actual conditions for solar thermophotovoltaic systems," Renewable Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.