IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v91y2012i1p304-308.html
   My bibliography  Save this article

Development of a novel cascading TPV and TE power generation system

Author

Listed:
  • Qiu, K.
  • Hayden, A.C.S.

Abstract

Thermophotovoltaic (TPV) cells can convert infrared radiation into electricity. They open up possibilities for silent and stand-alone power production in fuel-fired heating equipment. Similarly, thermoelectric (TE) devices convert thermal energy directly into electricity with no moving parts. However, TE devices have relatively low efficiency for electric power generation. In this study, the concept of cascading TPV and TE power generation was developed where the used heat stream is taken from the TPV and applied to the input of a TE converter. A prototype cascading TPV and TE generation system was built and tested. GaSb TPV cells and an integrated semiconductor TE converter were used in the cascading power system. The electric output characteristics of the TPV cells and the TE converter have been investigated in the power generation system at various operating conditions. Experimental results show that the cascading power generation is feasible and has the potential for certain applications.

Suggested Citation

  • Qiu, K. & Hayden, A.C.S., 2012. "Development of a novel cascading TPV and TE power generation system," Applied Energy, Elsevier, vol. 91(1), pages 304-308.
  • Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:304-308
    DOI: 10.1016/j.apenergy.2011.09.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911006465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.09.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mujeebu, M. Abdul & Abdullah, M.Z. & Bakar, M.Z. Abu & Mohamad, A.A. & Abdullah, M.K., 2009. "Applications of porous media combustion technology - A review," Applied Energy, Elsevier, vol. 86(9), pages 1365-1375, September.
    2. Durisch, W. & Bitnar, B. & Mayor, J. -C. & von Roth, Fritz & Sigg, H. & Tschudi, H. R. & Palfinger, G., 2003. "Small self-powered grid-connected thermophotovoltaic prototype system," Applied Energy, Elsevier, vol. 74(1-2), pages 149-157, January.
    3. Butcher, T.A. & Hammonds, J.S. & Horne, E. & Kamath, B. & Carpenter, J. & Woods, D.R., 2011. "Heat transfer and thermophotovoltaic power generation in oil-fired heating systems," Applied Energy, Elsevier, vol. 88(5), pages 1543-1548, May.
    4. Rowe, D.M., 1999. "Thermoelectrics, an environmentally-friendly source of electrical power," Renewable Energy, Elsevier, vol. 16(1), pages 1251-1256.
    5. Tobler, W.J. & Durisch, W., 2008. "High-performance selective Er-doped YAG emitters for thermophotovoltaics," Applied Energy, Elsevier, vol. 85(6), pages 483-493, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bitnar, Bernd & Durisch, Wilhelm & Holzner, Reto, 2013. "Thermophotovoltaics on the move to applications," Applied Energy, Elsevier, vol. 105(C), pages 430-438.
    2. Qiao, Guofu & Sun, Guodong & Li, Hui & Ou, Jinping, 2014. "Heterogeneous tiny energy: An appealing opportunity to power wireless sensor motes in a corrosive environment," Applied Energy, Elsevier, vol. 131(C), pages 87-96.
    3. Pan, J.F. & Wu, D. & Liu, Y.X. & Zhang, H.F. & Tang, A.K. & Xue, H., 2015. "Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor," Applied Energy, Elsevier, vol. 160(C), pages 802-807.
    4. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    5. Huen, Priscilla & Daoud, Walid A., 2017. "Advances in hybrid solar photovoltaic and thermoelectric generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1295-1302.
    6. Attolini, G. & Bosi, M. & Ferrari, C. & Melino, F., 2013. "Design guidelines for thermo-photo-voltaic generator: The critical role of the emitter size," Applied Energy, Elsevier, vol. 103(C), pages 618-626.
    7. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
    8. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan, 2020. "Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System," Energies, MDPI, vol. 13(22), pages 1-15, November.
    9. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    10. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    11. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    12. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    13. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    14. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    15. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    16. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    17. Huaibin Gao & Yongyong Wang & Shouchao Zong & Yu Ma & Chuanwei Zhang, 2023. "Experimental Investigation of a Self-Sustained Liquid Fuel Burner Using Inert Porous Media," Energies, MDPI, vol. 16(14), pages 1-18, July.
    18. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    19. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    20. Deepak, K. & Varma, V.B. & Prasanna, G. & Ramanujan, R.V., 2019. "Hybrid thermomagnetic oscillator for cooling and direct waste heat conversion to electricity," Applied Energy, Elsevier, vol. 233, pages 312-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:91:y:2012:i:1:p:304-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.