IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics036054421932451x.html
   My bibliography  Save this article

Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor

Author

Listed:
  • Pang, Lei
  • Shao, Yingjuan
  • Zhong, Wenqi
  • Gong, Zheng
  • Liu, Hao

Abstract

As one of the most promising carbon capture technologies for coal-fired power plants, oxy-coal combustion has attracted wide interests during the last two decades. In comparison to atmospheric oxy-fuel combustion, pressurized oxy-fuel combustion has the potential to further reduce the energy penalties caused by the carbon capture and storage and improve the net power plant efficiency. Although many researchers have investigated the NOx emissions of atmospheric oxy-coal combustion, the NOx emission behaviors under pressurized oxy-coal combustion conditions are much less understood and further comprehensive experimental investigations with continuous fuel-feeding pressurized oxy-coal combustion systems are needed in order to fill this knowledge gap. In the present study, a series of oxy-coal combustion experiments were conducted in a 30 kWth pressurized fluidized bed combustor. The effects of combustion pressure, bed temperature and excess oxygen on the NOx emissions were investigated systematically. The experimental results have shown that an increase in combustion pressure from 0.1 MPa to 0.4 MPa leads to a significant reduction in NOx emissions. An increase in bed temperature or excess oxygen results in higher NOx emissions under the higher combustion pressure conditions, which is consistent with what is observed under the atmospheric pressure combustion condition. Besides, it is found that the promoting effect of temperature increase on NOx emissions under the higher combustion pressures is weaker than that under the atmospheric pressure.

Suggested Citation

  • Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Gong, Zheng & Liu, Hao, 2020. "Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s036054421932451x
    DOI: 10.1016/j.energy.2019.116756
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421932451X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Jongsup & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2010. "Operating pressure dependence of the pressurized oxy-fuel combustion power cycle," Energy, Elsevier, vol. 35(12), pages 5391-5399.
    2. de Diego, L.F. & de las Obras-Loscertales, M. & Rufas, A. & García-Labiano, F. & Gayán, P. & Abad, A. & Adánez, J., 2013. "Pollutant emissions in a bubbling fluidized bed combustor working in oxy-fuel operating conditions: Effect of flue gas recirculation," Applied Energy, Elsevier, vol. 102(C), pages 860-867.
    3. Liu, Hao & Shao, Yingjuan, 2010. "Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant," Applied Energy, Elsevier, vol. 87(10), pages 3162-3170, October.
    4. Zebian, Hussam & Gazzino, Marco & Mitsos, Alexander, 2012. "Multi-variable optimization of pressurized oxy-coal combustion," Energy, Elsevier, vol. 38(1), pages 37-57.
    5. Li, Pin-Wei & Chyang, Chien-Song & Ni, Hung-Wen, 2018. "An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion," Energy, Elsevier, vol. 154(C), pages 319-327.
    6. Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2018. "Experimental investigation on the coal combustion in a pressurized fluidized bed," Energy, Elsevier, vol. 165(PB), pages 1119-1128.
    7. Lasek, Janusz A. & Janusz, Marcin & Zuwała, Jarosław & Głód, Krzysztof & Iluk, Andrzej, 2013. "Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures," Energy, Elsevier, vol. 62(C), pages 105-112.
    8. Gopan, Akshay & Kumfer, Benjamin M. & Phillips, Jeffrey & Thimsen, David & Smith, Richard & Axelbaum, Richard L., 2014. "Process design and performance analysis of a Staged, Pressurized Oxy-Combustion (SPOC) power plant for carbon capture," Applied Energy, Elsevier, vol. 125(C), pages 179-188.
    9. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    2. Joseba Moreno & Matthias Hornberger & Max Schmid & Günter Scheffknecht, 2021. "Oxy-Fuel Combustion of Hard Coal, Wheat Straw, and Solid Recovered Fuel in a 200 kW th Calcium Looping CFB Calciner," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Rahman, Zia ur & Wang, Xuebin & Zhang, Jiaye & Yang, Zhiwei & Dai, Gaofeng & Verma, Piyush & Mikulcic, Hrvoje & Vujanovic, Milan & Tan, Houzhang & Axelbaum, Richard L., 2022. "Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Lasek, Janusz A. & Głód, Krzysztof & Słowik, Krzysztof, 2021. "The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure," Renewable Energy, Elsevier, vol. 179(C), pages 828-841.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Zia ur & Wang, Xuebin & Zhang, Jiaye & Yang, Zhiwei & Dai, Gaofeng & Verma, Piyush & Mikulcic, Hrvoje & Vujanovic, Milan & Tan, Houzhang & Axelbaum, Richard L., 2022. "Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Dai, Gaofeng & Zhang, Jiaye & Wang, Xuebin & Tan, Houzhang & Rahman, Zia ur, 2022. "Calcination and desulfurization characteristics of calcium carbonate in pressurized oxy-combustion," Energy, Elsevier, vol. 261(PA).
    3. Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2018. "Experimental investigation on the coal combustion in a pressurized fluidized bed," Energy, Elsevier, vol. 165(PB), pages 1119-1128.
    4. Hachem Hamadeh & Sannan Y. Toor & Peter L. Douglas & S. Mani Sarathy & Robert W. Dibble & Eric Croiset, 2020. "Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke," Energies, MDPI, vol. 13(13), pages 1-12, July.
    5. Kim, Donghee & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Demonstration of 0.1 MWth pilot-scale pressurized oxy-fuel combustion for unpurified natural gas without CO2 dilution," Energy, Elsevier, vol. 223(C).
    6. Dobó, Zsolt & Backman, Marc & Whitty, Kevin J., 2019. "Experimental study and demonstration of pilot-scale oxy-coal combustion at elevated temperatures and pressures," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Kim, Donghee & Ahn, Hyungjun & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion," Energy, Elsevier, vol. 219(C).
    8. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    9. Kong, Runjuan & Li, Wei & Wang, Haigang & Ren, Qiangqiang, 2024. "Energy efficiency analysis and optimization of a pressurized oxy-fuel circulating fluidized bed combustion system," Energy, Elsevier, vol. 286(C).
    10. Zebian, Hussam & Mitsos, Alexander, 2014. "A split concept for HRSG (heat recovery steam generators) with simultaneous area reduction and performance improvement," Energy, Elsevier, vol. 71(C), pages 421-431.
    11. Zhang, Wenda & Sun, Shaozeng & Zhao, Yijun & Zhao, Zujie & Wang, Pengxiang & Feng, Dongdong & Li, Pengfei, 2020. "Effects of total pressure and CO2 partial pressure on the physicochemical properties and reactivity of pressurized coal char produced at rapid heating rate," Energy, Elsevier, vol. 208(C).
    12. Gopan, Akshay & Kumfer, Benjamin M. & Phillips, Jeffrey & Thimsen, David & Smith, Richard & Axelbaum, Richard L., 2014. "Process design and performance analysis of a Staged, Pressurized Oxy-Combustion (SPOC) power plant for carbon capture," Applied Energy, Elsevier, vol. 125(C), pages 179-188.
    13. Zebian, Hussam & Rossi, Nicola & Gazzino, Marco & Cumbo, Danila & Mitsos, Alexander, 2013. "Optimal design and operation of pressurized oxy-coal combustion with a direct contact separation column," Energy, Elsevier, vol. 49(C), pages 268-278.
    14. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    15. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    16. Jin, Bo & Zhao, Haibo & Zheng, Chuguang, 2015. "Optimization and control for CO2 compression and purification unit in oxy-combustion power plants," Energy, Elsevier, vol. 83(C), pages 416-430.
    17. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    18. Moon, Ji-Hong & Jo, Sung-Ho & Park, Sung Jin & Khoi, Nguyen Hoang & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2019. "Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 166(C), pages 183-192.
    19. Lasek, Janusz A. & Głód, Krzysztof & Słowik, Krzysztof, 2021. "The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure," Renewable Energy, Elsevier, vol. 179(C), pages 828-841.
    20. Zebian, Hussam & Mitsos, Alexander, 2014. "Pressurized OCC (oxy-coal combustion) process ideally flexible to the thermal load," Energy, Elsevier, vol. 73(C), pages 416-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s036054421932451x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.