IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v252y2019ic54.html
   My bibliography  Save this article

Experimental study and demonstration of pilot-scale oxy-coal combustion at elevated temperatures and pressures

Author

Listed:
  • Dobó, Zsolt
  • Backman, Marc
  • Whitty, Kevin J.

Abstract

High pressure oxy-fuel firing is a promising next-generation combustion technology for electricity generation, allowing net efficiency improvement compared to traditional oxy-fuel firing systems. Oxy-coal combustion has been extensively investigated at ambient pressure, but limited experimental data is available regarding this combustion method at elevated pressures at pilot or full scale. The study presented here investigates the operational performance of a high pressure, high temperature pilot-scale oxy-fuel combustor. Pulverized Utah bituminous coal in form of coal-water slurry was combusted at pressures up to 14 bar, temperatures up to 1600 °C and firing rates up to 300 kW. Eight different runs were selected for presentation and the measurements include flue gas composition (CO, CO2, CH4, SO2, O2), carbon and sulfur content of fly ash, combustor temperature profile and flame radiation profile. The flame radiation measurements were carried out with a novel narrow beam radiometer which measures local radiant heat flux at a specific location in the combustor. The radiation ranged from 108 to 279 kW/m2 depending mainly on combustor temperature. Additionally, the temperature significantly impacted the carbon content of fly ash: 2.66% was measured near 1600 °C, while the concentration increased to 36.7% when the temperature was decreased to 1300 °C. The successful experimental demonstrations showed that increasing pressure is a viable combustion method and a step towards enhancing the efficiency in oxy-fuel firing based power plants.

Suggested Citation

  • Dobó, Zsolt & Backman, Marc & Whitty, Kevin J., 2019. "Experimental study and demonstration of pilot-scale oxy-coal combustion at elevated temperatures and pressures," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:252:y:2019:i:c:54
    DOI: 10.1016/j.apenergy.2019.113450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    2. Hong, Jongsup & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2010. "Operating pressure dependence of the pressurized oxy-fuel combustion power cycle," Energy, Elsevier, vol. 35(12), pages 5391-5399.
    3. Singh, Ravi Inder & Kumar, Rajesh, 2016. "Current status and experimental investigation of oxy-fired fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 398-420.
    4. Lasek, Janusz A. & Janusz, Marcin & Zuwała, Jarosław & Głód, Krzysztof & Iluk, Andrzej, 2013. "Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures," Energy, Elsevier, vol. 62(C), pages 105-112.
    5. Zebian, Hussam & Gazzino, Marco & Mitsos, Alexander, 2012. "Multi-variable optimization of pressurized oxy-coal combustion," Energy, Elsevier, vol. 38(1), pages 37-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Symonds, Robert T. & Hughes, Robin W. & De Las Obras Loscertales, Margarita, 2020. "Oxy-pressurized fluidized bed combustion: Configuration and options analysis," Applied Energy, Elsevier, vol. 262(C).
    2. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
    4. Yang, Zhiwei & Khatri, Dishant & Verma, Piyush & Li, Tianxiang & Adeosun, Adewale & Kumfer, Benjamin M. & Axelbaum, Richard L., 2021. "Experimental study and demonstration of pilot-scale, dry feed, oxy-coal combustion under pressure," Applied Energy, Elsevier, vol. 285(C).
    5. Kim, Donghee & Ahn, Hyungjun & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion," Energy, Elsevier, vol. 219(C).
    6. Xu, Bin & Chen, Jianbao, 2021. "How to achieve a low-carbon transition in the heavy industry? A nonlinear perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    7. Li, Dafang & Sun, Weifu & Chen, Yangchaoyue, 2024. "Enhancing overpressure and velocity of methane detonation by adding sodium chlorate with a view to fracturing shale," Applied Energy, Elsevier, vol. 355(C).
    8. Kim, Donghee & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Demonstration of 0.1 MWth pilot-scale pressurized oxy-fuel combustion for unpurified natural gas without CO2 dilution," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    2. Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2018. "Experimental investigation on the coal combustion in a pressurized fluidized bed," Energy, Elsevier, vol. 165(PB), pages 1119-1128.
    3. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    4. Rahman, Zia ur & Wang, Xuebin & Zhang, Jiaye & Yang, Zhiwei & Dai, Gaofeng & Verma, Piyush & Mikulcic, Hrvoje & Vujanovic, Milan & Tan, Houzhang & Axelbaum, Richard L., 2022. "Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Gong, Zheng & Liu, Hao, 2020. "Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor," Energy, Elsevier, vol. 194(C).
    6. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    7. Gopan, Akshay & Kumfer, Benjamin M. & Phillips, Jeffrey & Thimsen, David & Smith, Richard & Axelbaum, Richard L., 2014. "Process design and performance analysis of a Staged, Pressurized Oxy-Combustion (SPOC) power plant for carbon capture," Applied Energy, Elsevier, vol. 125(C), pages 179-188.
    8. Kim, Donghee & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Demonstration of 0.1 MWth pilot-scale pressurized oxy-fuel combustion for unpurified natural gas without CO2 dilution," Energy, Elsevier, vol. 223(C).
    9. Zebian, Hussam & Mitsos, Alexander, 2014. "Pressurized OCC (oxy-coal combustion) process ideally flexible to the thermal load," Energy, Elsevier, vol. 73(C), pages 416-429.
    10. Yang, Zhiwei & Khatri, Dishant & Verma, Piyush & Li, Tianxiang & Adeosun, Adewale & Kumfer, Benjamin M. & Axelbaum, Richard L., 2021. "Experimental study and demonstration of pilot-scale, dry feed, oxy-coal combustion under pressure," Applied Energy, Elsevier, vol. 285(C).
    11. Zebian, Hussam & Mitsos, Alexander, 2013. "Pressurized oxy-coal combustion: Ideally flexible to uncertainties," Energy, Elsevier, vol. 57(C), pages 513-526.
    12. Kong, Runjuan & Li, Wei & Wang, Haigang & Ren, Qiangqiang, 2024. "Energy efficiency analysis and optimization of a pressurized oxy-fuel circulating fluidized bed combustion system," Energy, Elsevier, vol. 286(C).
    13. Zebian, Hussam & Mitsos, Alexander, 2014. "A split concept for HRSG (heat recovery steam generators) with simultaneous area reduction and performance improvement," Energy, Elsevier, vol. 71(C), pages 421-431.
    14. Zebian, Hussam & Rossi, Nicola & Gazzino, Marco & Cumbo, Danila & Mitsos, Alexander, 2013. "Optimal design and operation of pressurized oxy-coal combustion with a direct contact separation column," Energy, Elsevier, vol. 49(C), pages 268-278.
    15. Hachem Hamadeh & Sannan Y. Toor & Peter L. Douglas & S. Mani Sarathy & Robert W. Dibble & Eric Croiset, 2020. "Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke," Energies, MDPI, vol. 13(13), pages 1-12, July.
    16. Li, Kaiyang & Zeng, Yimin & Luo, Jing-Li, 2021. "Corrosion performance of candidate boiler tube alloys under advanced pressurized oxy-fuel combustion conditions," Energy, Elsevier, vol. 215(PB).
    17. Kim, Donghee & Ahn, Hyungjun & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion," Energy, Elsevier, vol. 219(C).
    18. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    19. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    20. Díez, Luis I. & García-Mariaca, Alexander & Canalís, Paula & Llera, Eva, 2023. "Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 284(C).

    More about this item

    Keywords

    Oxy-fuel; Pressure; Coal; Slurry;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.