IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp513-526.html
   My bibliography  Save this article

Pressurized oxy-coal combustion: Ideally flexible to uncertainties

Author

Listed:
  • Zebian, Hussam
  • Mitsos, Alexander

Abstract

Simultaneous multi-variable gradient-based optimization with multi-start is performed on a 300 MWe wet-recycling pressurized oxy-coal combustion process with carbon capture and sequestration, subject to uncertainty in fuel, ambient conditions, and other input specifications. Two forms of flue gas thermal recovery are studied, a surface heat exchanger and a direct contact separation column. Optimization enables ideal flexibility in the processes: when changing the coal utilized, the performance is not compromised compared to the optimum performance of a process specifically designed for that coal. Similarly, the processes are immune to other uncertainties like ambient conditions, air flow, slurry water flow, atomizer stream flow and the oxidizer stream oxygen purity. Consequently, stochastic programming is shown to be unnecessary. Close to optimum design, the processes are also shown to be insensitive towards design variables such as the areas of the feedwater heaters. Recently proposed thermodynamic criteria are used as embedded design specifications in the optimization process, rendering it faster and more robust.

Suggested Citation

  • Zebian, Hussam & Mitsos, Alexander, 2013. "Pressurized oxy-coal combustion: Ideally flexible to uncertainties," Energy, Elsevier, vol. 57(C), pages 513-526.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:513-526
    DOI: 10.1016/j.energy.2013.05.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213004337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.05.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Jongsup & Chaudhry, Gunaranjan & Brisson, J.G. & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2009. "Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor," Energy, Elsevier, vol. 34(9), pages 1332-1340.
    2. Zebian, Hussam & Mitsos, Alexander, 2012. "A double-pinch criterion for regenerative Rankine cycles," Energy, Elsevier, vol. 40(1), pages 258-270.
    3. Hong, Jongsup & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2010. "Operating pressure dependence of the pressurized oxy-fuel combustion power cycle," Energy, Elsevier, vol. 35(12), pages 5391-5399.
    4. Alexander Mitsos & Ioannis N Melas & Paraskeuas Siminelakis & Aikaterini D Chairakaki & Julio Saez-Rodriguez & Leonidas G Alexopoulos, 2009. "Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-11, December.
    5. Zebian, Hussam & Rossi, Nicola & Gazzino, Marco & Cumbo, Danila & Mitsos, Alexander, 2013. "Optimal design and operation of pressurized oxy-coal combustion with a direct contact separation column," Energy, Elsevier, vol. 49(C), pages 268-278.
    6. Zebian, Hussam & Gazzino, Marco & Mitsos, Alexander, 2012. "Multi-variable optimization of pressurized oxy-coal combustion," Energy, Elsevier, vol. 38(1), pages 37-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zebian, Hussam & Mitsos, Alexander, 2014. "Pressurized OCC (oxy-coal combustion) process ideally flexible to the thermal load," Energy, Elsevier, vol. 73(C), pages 416-429.
    2. Wu, Zhi-Jun & Yu, Xiao & Fu, Le-Zhong & Deng, Jun & Hu, Zong-Jie & Li, Li-Guang, 2014. "A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery," Energy, Elsevier, vol. 70(C), pages 110-120.
    3. Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
    4. Zebian, Hussam & Mitsos, Alexander, 2014. "A split concept for HRSG (heat recovery steam generators) with simultaneous area reduction and performance improvement," Energy, Elsevier, vol. 71(C), pages 421-431.
    5. Yang, Zhiwei & Khatri, Dishant & Verma, Piyush & Li, Tianxiang & Adeosun, Adewale & Kumfer, Benjamin M. & Axelbaum, Richard L., 2021. "Experimental study and demonstration of pilot-scale, dry feed, oxy-coal combustion under pressure," Applied Energy, Elsevier, vol. 285(C).
    6. Gunasekaran, S. & Mancini, N.D. & Mitsos, A., 2014. "Optimal design and operation of membrane-based oxy-combustion power plants," Energy, Elsevier, vol. 70(C), pages 338-354.
    7. Rahman, Zia ur & Wang, Xuebin & Zhang, Jiaye & Yang, Zhiwei & Dai, Gaofeng & Verma, Piyush & Mikulcic, Hrvoje & Vujanovic, Milan & Tan, Houzhang & Axelbaum, Richard L., 2022. "Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zebian, Hussam & Mitsos, Alexander, 2014. "Pressurized OCC (oxy-coal combustion) process ideally flexible to the thermal load," Energy, Elsevier, vol. 73(C), pages 416-429.
    2. Rahman, Zia ur & Wang, Xuebin & Zhang, Jiaye & Yang, Zhiwei & Dai, Gaofeng & Verma, Piyush & Mikulcic, Hrvoje & Vujanovic, Milan & Tan, Houzhang & Axelbaum, Richard L., 2022. "Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Zebian, Hussam & Mitsos, Alexander, 2014. "A split concept for HRSG (heat recovery steam generators) with simultaneous area reduction and performance improvement," Energy, Elsevier, vol. 71(C), pages 421-431.
    4. Zebian, Hussam & Rossi, Nicola & Gazzino, Marco & Cumbo, Danila & Mitsos, Alexander, 2013. "Optimal design and operation of pressurized oxy-coal combustion with a direct contact separation column," Energy, Elsevier, vol. 49(C), pages 268-278.
    5. Gopan, Akshay & Kumfer, Benjamin M. & Phillips, Jeffrey & Thimsen, David & Smith, Richard & Axelbaum, Richard L., 2014. "Process design and performance analysis of a Staged, Pressurized Oxy-Combustion (SPOC) power plant for carbon capture," Applied Energy, Elsevier, vol. 125(C), pages 179-188.
    6. Kim, Donghee & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Demonstration of 0.1 MWth pilot-scale pressurized oxy-fuel combustion for unpurified natural gas without CO2 dilution," Energy, Elsevier, vol. 223(C).
    7. Kim, Donghee & Ahn, Hyungjun & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion," Energy, Elsevier, vol. 219(C).
    8. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    9. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    10. Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2018. "Experimental investigation on the coal combustion in a pressurized fluidized bed," Energy, Elsevier, vol. 165(PB), pages 1119-1128.
    11. Lasek, Janusz A. & Janusz, Marcin & Zuwała, Jarosław & Głód, Krzysztof & Iluk, Andrzej, 2013. "Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures," Energy, Elsevier, vol. 62(C), pages 105-112.
    12. Gładysz, Paweł & Stanek, Wojciech & Czarnowska, Lucyna & Węcel, Gabriel & Langørgen, Øyvind, 2017. "Thermodynamic assessment of an integrated MILD oxyfuel combustion power plant," Energy, Elsevier, vol. 137(C), pages 761-774.
    13. Kim, Taewoo & Park, So Dam & Lee, Uen Do & Park, Byeong Cheol & Park, Kyoung Il & Hong, Jongsup, 2021. "Thermodynamic analysis of the 2nd generation pressurized fluidized-bed combustion cycle utilizing an oxy-coal boiler and a gasifier," Energy, Elsevier, vol. 236(C).
    14. Zebian, Hussam & Gazzino, Marco & Mitsos, Alexander, 2012. "Multi-variable optimization of pressurized oxy-coal combustion," Energy, Elsevier, vol. 38(1), pages 37-57.
    15. Gunasekaran, S. & Mancini, N.D. & Mitsos, A., 2014. "Optimal design and operation of membrane-based oxy-combustion power plants," Energy, Elsevier, vol. 70(C), pages 338-354.
    16. Chowdhury, Mehrin & Khan, Mohieminul Islam & Islam, Nawshad Arslan & Choudhuri, Ahsan, 2022. "Design and performance analysis of a Swirl Pintle injector for a 1 MWth pressurized oxy-coal combustor," Energy, Elsevier, vol. 261(PB).
    17. Kong, Runjuan & Li, Wei & Wang, Haigang & Ren, Qiangqiang, 2024. "Energy efficiency analysis and optimization of a pressurized oxy-fuel circulating fluidized bed combustion system," Energy, Elsevier, vol. 286(C).
    18. Hachem Hamadeh & Sannan Y. Toor & Peter L. Douglas & S. Mani Sarathy & Robert W. Dibble & Eric Croiset, 2020. "Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke," Energies, MDPI, vol. 13(13), pages 1-12, July.
    19. Dobó, Zsolt & Backman, Marc & Whitty, Kevin J., 2019. "Experimental study and demonstration of pilot-scale oxy-coal combustion at elevated temperatures and pressures," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Symonds, Robert T. & Hughes, Robin W. & De Las Obras Loscertales, Margarita, 2020. "Oxy-pressurized fluidized bed combustion: Configuration and options analysis," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:513-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.