IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v191y2020ics036054421932211x.html
   My bibliography  Save this article

Risk-based optimal bidding patterns in the deregulated power market using extended Markowitz model

Author

Listed:
  • Ostadi, Bakhtiar
  • Motamedi Sedeh, Omid
  • Husseinzadeh Kashan, Ali

Abstract

Deregulation of power industry has entailed important changes in the energy market. With the power industry being restructured, a generation company (GenCo) sells energy through auctions in a daily market, and submission of the appropriate amount of electricity with the right bidding price is important for a GenCo to maximize their profits and minimize the acceptance risk. The objective of this paper is to propose a novel approach for determination of the optimal biding patterns among GenCos in the deregulated power market using a hybrid of Markowitz Model and Genetic Algorithm (GA). While Markowitz Model as an optimization model considers the risk premium for biding patterns and GA as a search engine, considering the acceptance risk in deregulated market. A case study is used to examine the findings of the proposed approach. Also, to compare the proposed model, neural network by back propagation learning algorithm and real proposed pattern were considered. The numerical results indicate that the proposed model is statistically efficient and offers effective curves and biding patterns by lesser risk and equal profitability in day-ahead market as it is able to achieve better results compared to the neural network.

Suggested Citation

  • Ostadi, Bakhtiar & Motamedi Sedeh, Omid & Husseinzadeh Kashan, Ali, 2020. "Risk-based optimal bidding patterns in the deregulated power market using extended Markowitz model," Energy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:energy:v:191:y:2020:i:c:s036054421932211x
    DOI: 10.1016/j.energy.2019.116516
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421932211X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nojavan, Sayyad & Najafi-Ghalelou, Afshin & Majidi, Majid & Zare, Kazem, 2018. "Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach," Energy, Elsevier, vol. 142(C), pages 250-257.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Mahvi, M. & Ardehali, M.M., 2011. "Optimal bidding strategy in a competitive electricity market based on agent-based approach and numerical sensitivity analysis," Energy, Elsevier, vol. 36(11), pages 6367-6374.
    4. Lo Prete, Chiara & Hobbs, Benjamin F., 2016. "A cooperative game theoretic analysis of incentives for microgrids in regulated electricity markets," Applied Energy, Elsevier, vol. 169(C), pages 524-541.
    5. Mazandarani, A. & Mahlia, T.M.I. & Chong, W.T. & Moghavvemi, M., 2011. "Fuel consumption and emission prediction by Iranian power plants until 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1575-1592, April.
    6. Fazlalipour, Pary & Ehsan, Mehdi & Mohammadi-Ivatloo, Behnam, 2019. "Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets," Energy, Elsevier, vol. 171(C), pages 689-700.
    7. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2018. "Optimal bidding strategy for an energy hub in energy market," Energy, Elsevier, vol. 148(C), pages 482-493.
    8. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    9. Wang, Jidong & Wu, Jiahui & Che, Yanbo, 2019. "Agent and system dynamics-based hybrid modeling and simulation for multilateral bidding in electricity market," Energy, Elsevier, vol. 180(C), pages 444-456.
    10. Hongling, Liu & Chuanwen, Jiang & Yan, Zhang, 2008. "A review on risk-constrained hydropower scheduling in deregulated power market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1465-1475, June.
    11. Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.
    12. Qi, Yongzhi & Liu, Yutian & Wu, Qiuwei, 2017. "Non-cooperative regulation coordination based on game theory for wind farm clusters during ramping events," Energy, Elsevier, vol. 132(C), pages 136-146.
    13. Li, Gong & Shi, Jing & Qu, Xiuli, 2011. "Modeling methods for GenCo bidding strategy optimization in the liberalized electricity spot market–A state-of-the-art review," Energy, Elsevier, vol. 36(8), pages 4686-4700.
    14. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    15. Ottesen, Stig Ødegaard & Tomasgard, Asgeir & Fleten, Stein-Erik, 2018. "Multi market bidding strategies for demand side flexibility aggregators in electricity markets," Energy, Elsevier, vol. 149(C), pages 120-134.
    16. Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
    17. F J Nogales & A J Conejo, 2006. "Electricity price forecasting through transfer function models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 350-356, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jiahui & Wang, Jidong & Kong, Xiangyu, 2022. "Strategic bidding in a competitive electricity market: An intelligent method using Multi-Agent Transfer Learning based on reinforcement learning," Energy, Elsevier, vol. 256(C).
    2. Lu, Xiaohui & Yang, Yang & Wang, Peifang & Fan, Yiming & Yu, Fangzhong & Zafetti, Nicholas, 2021. "A new converged Emperor Penguin Optimizer for biding strategy in a day-ahead deregulated market clearing price: A case study in China," Energy, Elsevier, vol. 227(C).
    3. Setya Budi, Rizki Firmansyah & Sarjiya, & Hadi, Sasongko Pramono, 2022. "Indonesia's deregulated generation expansion planning model based on mixed strategy game theory model for determining the optimal power purchase agreement," Energy, Elsevier, vol. 260(C).
    4. Cassidy K. Buhler & Hande Y. Benson, 2023. "Efficient Solution of Portfolio Optimization Problems via Dimension Reduction and Sparsification," Papers 2306.12639, arXiv.org.
    5. Motamedi Sedeh, Omid & Ostadi, Bakhtiar, 2020. "Optimization of bidding strategy in the day-ahead market by consideration of seasonality trend of the market spot price," Energy Policy, Elsevier, vol. 145(C).
    6. Mojtaba Shivaie & Mohammad Kiani-Moghaddam & Philip D Weinsier, 2022. "Bilateral bidding strategy in joint day-ahead energy and reserve electricity markets considering techno-economic-environmental measures," Energy & Environment, , vol. 33(4), pages 696-727, June.
    7. Kavita Jain & Muhammed Basheer Jasser & Muzaffar Hamzah & Akash Saxena & Ali Wagdy Mohamed, 2022. "Harris Hawk Optimization-Based Deep Neural Networks Architecture for Optimal Bidding in the Electricity Market," Mathematics, MDPI, vol. 10(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    2. Kavita Jain & Muhammed Basheer Jasser & Muzaffar Hamzah & Akash Saxena & Ali Wagdy Mohamed, 2022. "Harris Hawk Optimization-Based Deep Neural Networks Architecture for Optimal Bidding in the Electricity Market," Mathematics, MDPI, vol. 10(12), pages 1-19, June.
    3. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    4. Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
    5. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    6. Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
    7. Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
    8. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    9. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    10. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    11. Mestre, Guillermo & Sánchez-Úbeda, Eugenio F. & Muñoz San Roque, Antonio & Alonso, Estrella, 2022. "The arithmetic of stepwise offer curves," Energy, Elsevier, vol. 239(PE).
    12. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    13. Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
    14. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    15. F. Cordoni, 2020. "A comparison of modern deep neural network architectures for energy spot price forecasting," Digital Finance, Springer, vol. 2(3), pages 189-210, December.
    16. Luo, Shuman & Weng, Yang, 2019. "A two-stage supervised learning approach for electricity price forecasting by leveraging different data sources," Applied Energy, Elsevier, vol. 242(C), pages 1497-1512.
    17. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    18. Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
    19. Xiao, Xiangsheng & Wang, Jianxiao & Lin, Rui & Hill, David J. & Kang, Chongqing, 2020. "Large-scale aggregation of prosumers toward strategic bidding in joint energy and regulation markets," Applied Energy, Elsevier, vol. 271(C).
    20. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:191:y:2020:i:c:s036054421932211x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.