IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v33y2022i4p696-727.html
   My bibliography  Save this article

Bilateral bidding strategy in joint day-ahead energy and reserve electricity markets considering techno-economic-environmental measures

Author

Listed:
  • Mojtaba Shivaie
  • Mohammad Kiani-Moghaddam
  • Philip D Weinsier

Abstract

In this study, a new bilateral equilibrium model was developed for the optimal bidding strategy of both price-taker generation companies (GenCos) and distribution companies (DisCos) that participate in a joint day-ahead energy and reserve electricity market. This model, from a new perspective, simultaneously takes into account such techno-economic-environmental measures as market power, security constraints, and environmental and loss considerations. The mathematical formulation of this new model, therefore, falls into a nonlinear, two-level optimization problem. The upper-level problem maximizes the quadratic profit functions of the GenCos and DisCos under incomplete information and passes the obtained optimal bidding strategies to the lower-level problem that clears a joint day-ahead energy and reserve electricity market. A locational marginal pricing mechanism was also considered for settling the electricity market. To solve this newly developed model, a competent multi-computational-stage, multi-dimensional, multiple-homogeneous enhanced melody search algorithm (MMM-EMSA), referred to as a symphony orchestra search algorithm (SOSA), was employed. Case studies using the IEEE 118-bus test system—a part of the American electrical power grid in the Midwestern U.S.—are provided in this paper in order to illustrate the effectiveness and capability of the model on a large-scale power grid. According to the simulation results, several conclusions can be drawn when comparing the unilateral bidding strategy: the competition among GenCos and DisCos facilitates; the improved performance of the electricity market; mitigation of the polluting atmospheric emission levels; and, the increase in total profits of the GenCos and DisCos.

Suggested Citation

  • Mojtaba Shivaie & Mohammad Kiani-Moghaddam & Philip D Weinsier, 2022. "Bilateral bidding strategy in joint day-ahead energy and reserve electricity markets considering techno-economic-environmental measures," Energy & Environment, , vol. 33(4), pages 696-727, June.
  • Handle: RePEc:sae:engenv:v:33:y:2022:i:4:p:696-727
    DOI: 10.1177/0958305X211014875
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211014875
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211014875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Afshar, Karim & Ghiasvand, Farshad Shamsini & Bigdeli, Nooshin, 2018. "Optimal bidding strategy of wind power producers in pay-as-bid power markets," Renewable Energy, Elsevier, vol. 127(C), pages 575-586.
    2. Ostadi, Bakhtiar & Motamedi Sedeh, Omid & Husseinzadeh Kashan, Ali, 2020. "Risk-based optimal bidding patterns in the deregulated power market using extended Markowitz model," Energy, Elsevier, vol. 191(C).
    3. McGovern, T. & Hicks, C., 2004. "Deregulation and restructuring of the global electricity supply industry and its impact upon power plant suppliers," International Journal of Production Economics, Elsevier, vol. 89(3), pages 321-337, June.
    4. Wang, Jianhui & Zhou, Zhi & Botterud, Audun, 2011. "An evolutionary game approach to analyzing bidding strategies in electricity markets with elastic demand," Energy, Elsevier, vol. 36(5), pages 3459-3467.
    5. Li, Gong & Shi, Jing & Qu, Xiuli, 2011. "Modeling methods for GenCo bidding strategy optimization in the liberalized electricity spot market–A state-of-the-art review," Energy, Elsevier, vol. 36(8), pages 4686-4700.
    6. Högselius, Per & Kaijser, Arne, 2010. "The politics of electricity deregulation in Sweden: the art of acting on multiple arenas," Energy Policy, Elsevier, vol. 38(5), pages 2245-2254, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shivaie, Mojtaba & Ameli, Mohammad T., 2015. "An environmental/techno-economic approach for bidding strategy in security-constrained electricity markets by a bi-level harmony search algorithm," Renewable Energy, Elsevier, vol. 83(C), pages 881-896.
    2. Debin Fang & Qiyu Ren & Qian Yu, 2018. "How Elastic Demand Affects Bidding Strategy in Electricity Market: An Auction Approach," Energies, MDPI, vol. 12(1), pages 1-13, December.
    3. Motamedi Sedeh, Omid & Ostadi, Bakhtiar, 2020. "Optimization of bidding strategy in the day-ahead market by consideration of seasonality trend of the market spot price," Energy Policy, Elsevier, vol. 145(C).
    4. Shafie-khah, Miadreza & Parsa Moghaddam, Mohsen & Sheikh-El-Eslami, Mohamad Kazem & Rahmani-Andebili, Mehdi, 2012. "Modeling of interactions between market regulations and behavior of plug-in electric vehicle aggregators in a virtual power market environment," Energy, Elsevier, vol. 40(1), pages 139-150.
    5. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Ma, Xin, 2021. "Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage," Energy, Elsevier, vol. 221(C).
    6. Min, C.G. & Kim, M.K. & Park, J.K. & Yoon, Y.T., 2013. "Game-theory-based generation maintenance scheduling in electricity markets," Energy, Elsevier, vol. 55(C), pages 310-318.
    7. Pinto, T. & Morais, H. & Oliveira, P. & Vale, Z. & Praça, I. & Ramos, C., 2011. "A new approach for multi-agent coalition formation and management in the scope of electricity markets," Energy, Elsevier, vol. 36(8), pages 5004-5015.
    8. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    9. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    10. Bin Ye & Jingjing Jiang & Lixin Miao & Ji Li & Yang Peng, 2015. "Innovative Carbon Allowance Allocation Policy for the Shenzhen Emission Trading Scheme in China," Sustainability, MDPI, vol. 8(1), pages 1-23, December.
    11. Zou, Peng & Chen, Qixin & Xia, Qing & He, Chang & Kang, Chongqing, 2015. "Incentive compatible pool-based electricity market design and implementation: A Bayesian mechanism design approach," Applied Energy, Elsevier, vol. 158(C), pages 508-518.
    12. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    13. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    14. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    15. Darmani, Anna & Rickne, Annika & Hidalgo, Antonio & Arvidsson, Niklas, 2016. "When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 372-381.
    16. Dzikri Firmansyah Hakam, 2018. "Market Power Modelling in Electricity Market: A Critical Review," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 347-356.
    17. Liao, Qi & Tu, Renfu & Zhang, Wan & Wang, Bohong & Liang, Yongtu & Zhang, Haoran, 2023. "Auction design for capacity allocation in the petroleum pipeline under fair opening," Energy, Elsevier, vol. 264(C).
    18. Mestre, Guillermo & Sánchez-Úbeda, Eugenio F. & Muñoz San Roque, Antonio & Alonso, Estrella, 2022. "The arithmetic of stepwise offer curves," Energy, Elsevier, vol. 239(PE).
    19. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    20. Bubak, Baran, 2020. "تخمین نرخ بهینه عوارض تراکم برای آزادراه‏های ایران با استفاده از مدل قیمت‏گذاری ارزش [Estimation of Optimal Rate for Compact Tariffs in Highways across Iran applying the Value Pricing Methodology]," MPRA Paper 105490, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:33:y:2022:i:4:p:696-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.