IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1864-d231620.html
   My bibliography  Save this article

Market and Technological Perspectives for the New Generation of Regional Passenger Aircraft

Author

Listed:
  • Anita Prapotnik Brdnik

    (Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, 2000 Maribor, Slovenia
    These authors contributed equally to this work.)

  • Rok Kamnik

    (Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, 2000 Maribor, Slovenia
    These authors contributed equally to this work.)

  • Maršenka Marksel

    (Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, 2000 Maribor, Slovenia)

  • Stanislav Božičnik

    (Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, 2000 Maribor, Slovenia)

Abstract

This article describes the extent to which hybrid aircraft and all-electric aircraft can present a solution for reducing HC, CO, and NO x emissions and noise in the vicinity of airports, in the category of regional passenger aircraft. The goal of the article is to identify, basing on aircraft technical characteristics and market demands, in which sectors of air transport can all-electric or hybrid aircraft be most feasibly introduced. Firstly, a simple theoretical model based on a connection between the aircraft mass and aircraft energy consumption is used to calculate basic technical characteristics and limitations of hybrid and all-electric aircraft. Second, market demands for regional aircraft are presented and discussed, with the intention of recognising the possibilities of replacing conventional aircraft with all-electric and hybrid aircraft models in regional air transport in the near future. Third, quantity of HC, CO, and NO x , CO gas emissions of regional aircraft in Europe was calculated to recognise the possible reduction of gas emissions if hybrid and all-electric aircraft would be implemented.

Suggested Citation

  • Anita Prapotnik Brdnik & Rok Kamnik & Maršenka Marksel & Stanislav Božičnik, 2019. "Market and Technological Perspectives for the New Generation of Regional Passenger Aircraft," Energies, MDPI, vol. 12(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1864-:d:231620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schmidtchen, U. & Behrend, E. & Pohl, H.-W. & Rostek, N., 1997. "Hydrogen aircraft and airport safety," Renewable and Sustainable Energy Reviews, Elsevier, vol. 1(4), pages 239-269, December.
    2. Andreas W. Schäfer & Steven R. H. Barrett & Khan Doyme & Lynnette M. Dray & Albert R. Gnadt & Rod Self & Aidan O’Sullivan & Athanasios P. Synodinos & Antonio J. Torija, 2019. "Technological, economic and environmental prospects of all-electric aircraft," Nature Energy, Nature, vol. 4(2), pages 160-166, February.
    3. Baharozu, Eren & Soykan, Gurkan & Ozerdem, M. Baris, 2017. "Future aircraft concept in terms of energy efficiency and environmental factors," Energy, Elsevier, vol. 140(P2), pages 1368-1377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Arif Hasan & Abdullah Al Mamun & Syed Masiur Rahman & Karim Malik & Md. Iqram Uddin Al Amran & Abu Nasser Khondaker & Omer Reshi & Surya Prakash Tiwari & Fahad Saleh Alismail, 2021. "Climate Change Mitigation Pathways for the Aviation Sector," Sustainability, MDPI, vol. 13(7), pages 1-29, March.
    2. Karim Abu Salem & Giuseppe Palaia & Alessandro A. Quarta, 2023. "Impact of Figures of Merit Selection on Hybrid–Electric Regional Aircraft Design and Performance Analysis," Energies, MDPI, vol. 16(23), pages 1-26, December.
    3. Maršenka Marksel & Anita Prapotnik Brdnik, 2022. "Maximum Take-Off Mass Estimation of a 19-Seat Fuel Cell Aircraft Consuming Liquid Hydrogen," Sustainability, MDPI, vol. 14(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiambaretto, Paul & Mayenc, Elodie & Chappert, Hervé & Engsig, Juliane & Fernandez, Anne-Sophie & Le Roy, Frédéric, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Journal of Air Transport Management, Elsevier, vol. 93(C).
    2. Rohacs, Jozsef & Rohacs, Daniel, 2020. "Energy coefficients for comparison of aircraft supported by different propulsion systems," Energy, Elsevier, vol. 191(C).
    3. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    4. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    5. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    7. Paul Chiambaretto & Elodie Mayenc & Hervé Chappert & Juliane Engsig & Anne-Sophie Fernandez & Frédéric Le Roy, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Post-Print hal-03514706, HAL.
    8. Yang, Yuanchao & Gao, Zichen, 2019. "Power optimization of the environmental control system for the civil more electric aircraft," Energy, Elsevier, vol. 172(C), pages 196-206.
    9. Aneta Kulanovic & Johan Nordensvärd, 2021. "Exploring the Political Discursive Lock-Ins on Sustainable Aviation in Sweden," Energies, MDPI, vol. 14(21), pages 1-16, November.
    10. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    11. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    12. Talwar, Chetan & Joormann, Imke & Ginster, Raphael & Spengler, Thomas Stefan, 2023. "How much can electric aircraft contribute to reaching the Flightpath 2050 CO2 emissions goal? A system dynamics approach for european short haul flights," Journal of Air Transport Management, Elsevier, vol. 112(C).
    13. Baroutaji, Ahmad & Wilberforce, Tabbi & Ramadan, Mohamad & Olabi, Abdul Ghani, 2019. "Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 31-40.
    14. Wang, Bin & Wang, Chaohui & Wang, Zhiyu & Ni, Siliang & Yang, Yixin & Tian, Pengyu, 2023. "Adaptive state of energy evaluation for supercapacitor in emergency power system of more-electric aircraft," Energy, Elsevier, vol. 263(PA).
    15. Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
    16. Che, Yunhong & Deng, Zhongwei & Li, Penghua & Tang, Xiaolin & Khosravinia, Kavian & Lin, Xianke & Hu, Xiaosong, 2022. "State of health prognostics for series battery packs: A universal deep learning method," Energy, Elsevier, vol. 238(PB).
    17. Goldberg, C. & Nalianda, D. & Sethi, V. & Pilidis, P. & Singh, R. & Kyprianidis, K., 2018. "Assessment of an energy-efficient aircraft concept from a techno-economic perspective," Applied Energy, Elsevier, vol. 221(C), pages 229-238.
    18. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    19. Zaporozhets, Oleksandr & Isaienko, Volodymyr & Synylo, Kateryna, 2020. "Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment," Energy, Elsevier, vol. 211(C).
    20. Kinene, Alan & Birolini, Sebastian & Cattaneo, Mattia & Granberg, Tobias Andersson, 2023. "Electric aircraft charging network design for regional routes: A novel mathematical formulation and kernel search heuristic," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1300-1315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1864-:d:231620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.