Modeling and experimental verification of a fractional damping quad-stable energy harvesting system for use in wireless sensor networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116301
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
- Mingyuan Gao & Yunwu Li & Jun Lu & Yifeng Wang & Ping Wang & Li Wang, 2018. "Condition monitoring of urban rail transit by local energy harvesting," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
- Rezaei, Masoud & Talebitooti, R. & Rahmanian, Sasan, 2019. "Efficient energy harvesting from nonlinear vibrations of PZT beam under simultaneous resonances," Energy, Elsevier, vol. 182(C), pages 369-380.
- Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
- Zhou, Shengxi & Cao, Junyi & Inman, Daniel J. & Lin, Jing & Liu, Shengsheng & Wang, Zezhou, 2014. "Broadband tristable energy harvester: Modeling and experiment verification," Applied Energy, Elsevier, vol. 133(C), pages 33-39.
- Lokenath Debnath, 2003. "Recent applications of fractional calculus to science and engineering," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-30, January.
- Kansha, Yasuki & Ishizuka, Masanori, 2019. "Design of energy harvesting wireless sensors using magnetic phase transition," Energy, Elsevier, vol. 180(C), pages 1001-1007.
- Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
- Tang, Xiaolin & Zhang, Dejiu & Liu, Teng & Khajepour, Amir & Yu, Haisheng & Wang, Hong, 2019. "Research on the energy control of a dual-motor hybrid vehicle during engine start-stop process," Energy, Elsevier, vol. 166(C), pages 1181-1193.
- Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.
- Gao, Mingyuan & Su, Chengguang & Cong, Jianli & Yang, Fan & Wang, Yifeng & Wang, Ping, 2019. "Harvesting thermoelectric energy from railway track," Energy, Elsevier, vol. 180(C), pages 315-329.
- Tchoukuegno, R. & Nana Nbendjo, B.R. & Woafo, P., 2002. "Resonant oscillations and fractal basin boundaries of a particle in a φ6 potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 304(3), pages 362-378.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pan, Jianan & Qin, Weiyang & Deng, Wangzheng & Zhang, Pengtian & Zhou, Zhiyong, 2021. "Harvesting weak vibration energy by integrating piezoelectric inverted beam and pendulum," Energy, Elsevier, vol. 227(C).
- Rezaei, Masoud & Talebitooti, Roohollah & Liao, Wei-Hsin, 2022. "Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches," Energy, Elsevier, vol. 239(PE).
- Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
- Wang, Yilong & Yang, Zhengbao & Cao, Dengqing, 2021. "On the offset distance of rotational piezoelectric energy harvesters," Energy, Elsevier, vol. 220(C).
- Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
- Xie, Jiaquan & Zhao, Fuqiang & He, Dongping & Shi, Wei, 2022. "Bifurcation and resonance of fractional cubic nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Arias, Francisco J. & De Las Heras, Salvador, 2019. "The use of compliant surfaces for harvesting energy from water streams," Energy, Elsevier, vol. 189(C).
- Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
- Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
- Wang, Yifeng & Li, Shoutai & Gao, Mingyuan & Ouyang, Huajiang & He, Qing & Wang, Ping, 2021. "Analysis, design and testing of a rolling magnet harvester with diametrical magnetization for train vibration," Applied Energy, Elsevier, vol. 300(C).
- Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
- Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
- Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
- Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
- Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
- Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
- Jia, Jinda & Shan, Xiaobiao & Upadrashta, Deepesh & Xie, Tao & Yang, Yaowen & Song, Rujun, 2020. "An asymmetric bending-torsional piezoelectric energy harvester at low wind speed," Energy, Elsevier, vol. 198(C).
- Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
- Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
- Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
- Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).
- Mingyuan Gao & Yunwu Li & Jun Lu & Yifeng Wang & Ping Wang & Li Wang, 2018. "Condition monitoring of urban rail transit by local energy harvesting," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
- Rezaei, Masoud & Talebitooti, Roohollah & Liao, Wei-Hsin, 2022. "Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches," Energy, Elsevier, vol. 239(PE).
More about this item
Keywords
Bifurcations and chaos; Energy harvesting; Fractional calculus; Magnetic levitation; Renewable energy; Wireless sensors;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219319966. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.