Design of energy harvesting wireless sensors using magnetic phase transition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.05.128
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Haikun & He, Chaoming & Lv, Siyun & Sun, Haoran, 2018. "A new electromagnetic vibrational energy harvesting device for swaying cables," Applied Energy, Elsevier, vol. 228(C), pages 2448-2461.
- Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
- Huang, Ton-Churo & Leu, Yih-Guang & Huang, Chia-Wei, 2017. "Powering IoTs with a feedforward quasi universal boost converter energy harvester," Energy, Elsevier, vol. 133(C), pages 879-886.
- Zhang, Xiaoshun & Yu, Tao & Xu, Zhao & Fan, Zhun, 2018. "A cyber-physical-social system with parallel learning for distributed energy management of a microgrid," Energy, Elsevier, vol. 165(PA), pages 205-221.
- Babayo, Aliyu Aliyu & Anisi, Mohammad Hossein & Ali, Ihsan, 2017. "A Review on energy management schemes in energy harvesting wireless sensor networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1176-1184.
- Kotani, Yui & Kansha, Yasuki & Tsutsumi, Atsushi, 2013. "Conceptual design of an active magnetic regenerative heat circulator based on self-heat recuperation technology," Energy, Elsevier, vol. 55(C), pages 127-133.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yunus Zengin & Serkan Naktiyok & Erdoğan Kaygın & Onur Kavak & Ethem Topçuoğlu, 2021. "An Investigation upon Industry 4.0 and Society 5.0 within the Context of Sustainable Development Goals," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
- Arias, Francisco J. & De Las Heras, Salvador, 2019. "The use of compliant surfaces for harvesting energy from water streams," Energy, Elsevier, vol. 189(C).
- Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Yao, Ye & Wang, Ping & Sun, Yuhua & Xiao, Jieling, 2020. "Modeling and experimental verification of a fractional damping quad-stable energy harvesting system for use in wireless sensor networks," Energy, Elsevier, vol. 190(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zeadally, Sherali & Shaikh, Faisal Karim & Talpur, Anum & Sheng, Quan Z., 2020. "Design architectures for energy harvesting in the Internet of Things," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
- Sahraei, Nasim & Looney, Erin E. & Watson, Sterling M. & Peters, Ian Marius & Buonassisi, Tonio, 2018. "Adaptive power consumption improves the reliability of solar-powered devices for internet of things," Applied Energy, Elsevier, vol. 224(C), pages 322-329.
- Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
- Yao, Yao & Shen, Zhicheng & Wang, Qiliang & Du, Jiyun & Lu, Lin & Yang, Hongxing, 2023. "Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines," Applied Energy, Elsevier, vol. 329(C).
- Eswaran, U. & Ramiah, H. & Kanesan, J. & Reza, A.W., 2015. "Energy saving power amplifier design methodologies for mobile wireless communications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1721-1727.
- Latif, Usman & Younis, M. Yamin & Idrees, Saad & Uddin, Emad & Abdelkefi, Abdessattar & Munir, Adnan & Zhao, Ming, 2023. "Synergistic analysis of wake effect of two cylinders on energy harvesting characteristics of piezoelectric flag," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Quan Wang & Kyung-Bum Kim & Sang-Bum Woo & Yooseob Song & Tae-Hyun Sung, 2021. "A Magneto-Mechanical Piezoelectric Energy Harvester Designed to Scavenge AC Magnetic Field from Thermal Power Plant with Power-Line Cables," Energies, MDPI, vol. 14(9), pages 1-12, April.
- M׳boungui, G. & Adendorff, K. & Naidoo, R. & Jimoh, A.A. & Okojie, D.E., 2015. "A hybrid piezoelectric micro-power generator for use in low power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1136-1144.
- Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
- Mahdi Zareei & Cesar Vargas-Rosales & Mohammad Hossein Anisi & Leila Musavian & Rafaela Villalpando-Hernandez & Shidrokh Goudarzi & Ehab Mahmoud Mohamed, 2019. "Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications," Energies, MDPI, vol. 12(14), pages 1-14, July.
- Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
- Eghbali, Pejman & Younesian, Davood & Farhangdoust, Saman, 2020. "Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators," Applied Energy, Elsevier, vol. 270(C).
- Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.
- Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Kan, Junwu & Zhang, Li & Wang, Shuyun & Lin, Shijie & Yang, Zemeng & Meng, Fanxu & Zhang, Zhonghua, 2023. "Design and characterization of a self-excited unibody piezoelectric energy harvester by utilizing rotationally induced pendulation of along-groove iron balls," Energy, Elsevier, vol. 285(C).
- Ahmed Redha Mahlous, 2017. "SCMC: An Efficient Scheme for Minimizing Energy in WSNs Using a Set Cover Approach," Future Internet, MDPI, vol. 9(4), pages 1-18, December.
- Srie Vidhya Janani, E. & Ganesh Kumar, P., 2015. "Evaluating the technical barriers of large scale sustainable wireless sensor network: A resources approach," Resources Policy, Elsevier, vol. 46(P1), pages 134-141.
- Akhtar, Fayaz & Rehmani, Mubashir Husain, 2015. "Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 769-784.
- Kan, Junwu & Fu, Jiawei & Wang, Shuyun & Zhang, Zhonghua & Chen, Song & Yang, Can, 2017. "Study on a piezo-disk energy harvester excited by rotary magnets," Energy, Elsevier, vol. 122(C), pages 62-69.
- Wang, Quan & Kim, Kyung-Bum & Woo, Sang Bum & Ko, Sung Min & Song, Yooseob & Sung, Tae Hyun, 2022. "Enhanced electrical performance of spring-supported magneto piezoelectric harvester to achieve 60 Hz under AC magnetic field," Energy, Elsevier, vol. 238(PB).
More about this item
Keywords
Wireless sensors; Energy harvesting; Cyber-physical systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:1001-1007. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.