IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2479-d170495.html
   My bibliography  Save this article

Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network

Author

Listed:
  • Yue Wang

    (Science and Technology on Information Systems Engineering Laboratory, College of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Zhong Liu

    (Science and Technology on Information Systems Engineering Laboratory, College of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Jianmai Shi

    (Science and Technology on Information Systems Engineering Laboratory, College of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Guohua Wu

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Rui Wang

    (Science and Technology on Information Systems Engineering Laboratory, College of System Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract

The promotion of the battery electric vehicle has become a worldwide problem for governments due to its short endurance range and slow charging rate. Besides an appropriate network of charging facilities, a subsidy has proved to be an effective way to increase the market share of battery electric vehicles. In this paper, we investigate the joint optimal policy for a subsidy on electric vehicles and infrastructure construction in a highway network, where the impact of siting and sizing of fast charging stations and the impact of subsidy on the potential electric vehicle flows is considered. A new specified local search (LS)-based algorithm is developed to maximize the overall number of available battery electric vehicles in the network, which can get provide better solutions in most situations when compared with existed algorithms. Moreover, we firstly combined the existing algorithms to establish a multi-stage optimization method, which can obtain better solutions than all existed algorithms. A practical case from the highway network in Hunan, China, is studied to analyze the factors that impact the choice of subsidy and the deployment of charging stations. The results prove that the joint policy for subsidy and infrastructure construction can be effectively improved with the optimization model and the algorithms we developed. The managerial analysis indicates that the improvement on the capacity of charging facility can increase the proportion of construction fees in the total budget, while the improvement in the endurance range of battery electric vehicles is more efficient in expanding battery electric vehicle adoption in the highway network. A more detailed formulation of the battery electric vehicle flow demand and equilibrium situation will be studied in the future.

Suggested Citation

  • Yue Wang & Zhong Liu & Jianmai Shi & Guohua Wu & Rui Wang, 2018. "Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network," Energies, MDPI, vol. 11(9), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2479-:d:170495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    2. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    3. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    4. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    5. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    6. Capar, Ismail & Kuby, Michael & Leon, V. Jorge & Tsai, Yu-Jiun, 2013. "An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations," European Journal of Operational Research, Elsevier, vol. 227(1), pages 142-151.
    7. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    8. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    9. Upchurch, Christopher & Kuby, Michael, 2010. "Comparing the p-median and flow-refueling models for locating alternative-fuel stations," Journal of Transport Geography, Elsevier, vol. 18(6), pages 750-758.
    10. Wang, Ying-Wei & Lin, Chuah-Chih, 2009. "Locating road-vehicle refueling stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 821-829, September.
    11. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    2. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    3. Tianwei Lu & Enjian Yao & Fanglei Jin & Long Pan, 2020. "Alternative Incentive Policies against Purchase Subsidy Decrease for Battery Electric Vehicle (BEV) Adoption," Energies, MDPI, vol. 13(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    2. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Anjos, Miguel F. & Gendron, Bernard & Joyce-Moniz, Martim, 2020. "Increasing electric vehicle adoption through the optimal deployment of fast-charging stations for local and long-distance travel," European Journal of Operational Research, Elsevier, vol. 285(1), pages 263-278.
    4. Yıldız, Barış & Arslan, Okan & Karaşan, Oya Ekin, 2016. "A branch and price approach for routing and refueling station location model," European Journal of Operational Research, Elsevier, vol. 248(3), pages 815-826.
    5. Rabl, Regina & Reuter-Oppermann, Melanie & Jochem, Patrick E.P., 2024. "Charging infrastructure for electric vehicles in New Zealand," Transport Policy, Elsevier, vol. 148(C), pages 124-144.
    6. Schiffer, Maximilian & Walther, Grit, 2017. "The electric location routing problem with time windows and partial recharging," European Journal of Operational Research, Elsevier, vol. 260(3), pages 995-1013.
    7. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    8. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    9. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    10. Patrick Jochem & Carsten Brendel & Melanie Reuter-Oppermann & Wolf Fichtner & Stefan Nickel, 2016. "Optimizing the allocation of fast charging infrastructure along the German autobahn," Journal of Business Economics, Springer, vol. 86(5), pages 513-535, July.
    11. Meysam Hosseini & Arsalan Rahmani & F. Hooshmand, 2022. "A robust model for recharging station location problem," Operational Research, Springer, vol. 22(4), pages 4397-4440, September.
    12. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    13. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Hosseini, Meysam & MirHassani, S.A., 2015. "Refueling-station location problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 101-116.
    15. Kuby, Michael & Capar, Ismail & Kim, Jong-Geun, 2017. "Efficient and equitable transnational infrastructure planning for natural gas trucking in the European Union," European Journal of Operational Research, Elsevier, vol. 257(3), pages 979-991.
    16. Farzaneh Ferdowsi & Hamid Reza Maleki & Sanaz Rivaz, 2020. "Air refueling tanker allocation based on a multi-objective zero-one integer programming model," Operational Research, Springer, vol. 20(4), pages 1913-1938, December.
    17. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    18. Tran, Trung Hieu & Nagy, Gábor & Nguyen, Thu Ba T. & Wassan, Niaz A., 2018. "An efficient heuristic algorithm for the alternative-fuel station location problem," European Journal of Operational Research, Elsevier, vol. 269(1), pages 159-170.
    19. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    20. Monir Sabbaghtorkan & Rajan Batta & Qing He, 2022. "On the analysis of an idealized model to manage gasoline supplies in a short-notice hurricane evacuation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 911-945, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2479-:d:170495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.