IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219319140.html
   My bibliography  Save this article

A Copula-based battery pack consistency modeling method and its application on the energy utilization efficiency estimation

Author

Listed:
  • Jiang, Yan
  • Jiang, Jiuchun
  • Zhang, Caiping
  • Zhang, Weige
  • Gao, Yang
  • Mi, Chris

Abstract

The consistency of battery cells directly influences the maximum available energy and the efficiency of the battery pack, and the energy utilization efficiency (EUE) is a key parameter for the balancing of batteries. Therefore, this paper focuses on the consistency modeling and state estimation of battery packs. In this study, a Copula-based battery pack consistency modeling method is developed. The proposed method shows superiority compared with two existing methods, because it can describe the statistical characteristics of the battery consistency parameters, and the dependence structure between parameters. The squared Euclidean distances between the marginal empirical cumulative distribution functions of the test data and that of the proposed model for capacity, resistance, and SOC are 0.029, 0.169, and 0.025, respectively. The errors of the correlation coefficients between the proposed model and the test data are within 0.12. Then the framework of battery pack EUE estimation using the consistency model is proposed. The accuracy of the proposed method is verified based on the test results of a battery pack with 95 cells connected in-series. The EUE estimation error is within 0.6% at various discharge current rates. The EUE estimation results could provide support for the performance evaluation and balancing of battery packs.

Suggested Citation

  • Jiang, Yan & Jiang, Jiuchun & Zhang, Caiping & Zhang, Weige & Gao, Yang & Mi, Chris, 2019. "A Copula-based battery pack consistency modeling method and its application on the energy utilization efficiency estimation," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319140
    DOI: 10.1016/j.energy.2019.116219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219319140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manoj Mathew & Stefan Janhunen & Mahir Rashid & Frank Long & Michael Fowler, 2018. "Comparative Analysis of Lithium-Ion Battery Resistance Estimation Techniques for Battery Management Systems," Energies, MDPI, vol. 11(6), pages 1-15, June.
    2. Diao, Weiping & Xue, Nan & Bhattacharjee, Vikram & Jiang, Jiuchun & Karabasoglu, Orkun & Pecht, Michael, 2018. "Active battery cell equalization based on residual available energy maximization," Applied Energy, Elsevier, vol. 210(C), pages 690-698.
    3. Xi, Zhimin & Jing, Rong & Wang, Pingfeng & Hu, Chao, 2014. "A copula-based sampling method for data-driven prognostics," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 72-82.
    4. Klein, M. & Tong, S. & Park, J.W., 2016. "In-plane nonuniform temperature effects on the performance of a large-format lithium-ion pouch cell," Applied Energy, Elsevier, vol. 165(C), pages 639-647.
    5. Yun Bao & Wenbin Dong & Dian Wang, 2018. "Online Internal Resistance Measurement Application in Lithium Ion Battery Capacity and State of Charge Estimation," Energies, MDPI, vol. 11(5), pages 1-11, April.
    6. Yang, Fangfang & Wang, Dong & Zhao, Yang & Tsui, Kwok-Leung & Bae, Suk Joo, 2018. "A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries," Energy, Elsevier, vol. 145(C), pages 486-495.
    7. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Zhang, Caiping & Jiang, Yan & Jiang, Jiuchun & Cheng, Gong & Diao, Weiping & Zhang, Weige, 2017. "Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 510-519.
    9. Weiping Diao & Jiuchun Jiang & Hui Liang & Caiping Zhang & Yan Jiang & Leyi Wang & Biqiang Mu, 2016. "Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems," Energies, MDPI, vol. 9(7), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    2. Fan, Xinyuan & Qi, Hongfeng & Zhang, Weige & Zhang, Yanru, 2024. "Experiment-free physical hybrid neural network approach for battery pack inconsistency estimation," Applied Energy, Elsevier, vol. 358(C).
    3. Fan, Xinyuan & Zhang, Weige & Sun, Bingxiang & Zhang, Junwei & He, Xitian, 2022. "Battery pack consistency modeling based on generative adversarial networks," Energy, Elsevier, vol. 239(PE).
    4. Bingxiang Sun & Xinze Zhao & Xitian He & Haijun Ruan & Zhenlin Zhu & Xingzhen Zhou, 2023. "Virtual Battery Pack-Based Battery Management System Testing Framework," Energies, MDPI, vol. 16(2), pages 1-21, January.
    5. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    6. An, Fulai & Zhang, Weige & Sun, Bingxiang & Jiang, Jiuchun & Fan, Xinyuan, 2023. "A novel battery pack inconsistency model and influence degree analysis of inconsistency on output energy," Energy, Elsevier, vol. 271(C).
    7. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    8. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    9. Chang, Long & Ma, Chen & Zhang, Chenghui & Duan, Bin & Cui, Naxin & Li, Changlong, 2023. "Correlations of lithium-ion battery parameter variations and connected configurations on pack statistics," Applied Energy, Elsevier, vol. 329(C).
    10. Guo, Yuanjun & Yang, Zhile & Liu, Kailong & Zhang, Yanhui & Feng, Wei, 2021. "A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system," Energy, Elsevier, vol. 219(C).
    11. Han, Zhiyue & Wang, Wenjie & Du, Zhiming & Zhang, Yupeng & Yu, Yue, 2021. "Self-heating inflatable lifejacket using gas generating agent as energy source," Energy, Elsevier, vol. 224(C).
    12. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    2. An, Fulai & Zhang, Weige & Sun, Bingxiang & Jiang, Jiuchun & Fan, Xinyuan, 2023. "A novel battery pack inconsistency model and influence degree analysis of inconsistency on output energy," Energy, Elsevier, vol. 271(C).
    3. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    4. Zhang, Caiping & Jiang, Yan & Jiang, Jiuchun & Cheng, Gong & Diao, Weiping & Zhang, Weige, 2017. "Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 510-519.
    5. Li, Penghua & Liu, Jianfei & Deng, Zhongwei & Yang, Yalian & Lin, Xianke & Couture, Jonathan & Hu, Xiaosong, 2022. "Increasing energy utilization of battery energy storage via active multivariable fusion-driven balancing," Energy, Elsevier, vol. 243(C).
    6. Xuning Feng & Caihao Weng & Xiangming He & Li Wang & Dongsheng Ren & Languang Lu & Xuebing Han & Minggao Ouyang, 2018. "Incremental Capacity Analysis on Commercial Lithium-Ion Batteries using Support Vector Regression: A Parametric Study," Energies, MDPI, vol. 11(9), pages 1-21, September.
    7. Fan, Xinyuan & Zhang, Weige & Sun, Bingxiang & Zhang, Junwei & He, Xitian, 2022. "Battery pack consistency modeling based on generative adversarial networks," Energy, Elsevier, vol. 239(PE).
    8. Diao, Weiping & Xue, Nan & Bhattacharjee, Vikram & Jiang, Jiuchun & Karabasoglu, Orkun & Pecht, Michael, 2018. "Active battery cell equalization based on residual available energy maximization," Applied Energy, Elsevier, vol. 210(C), pages 690-698.
    9. Fei, Zicheng & Yang, Fangfang & Tsui, Kwok-Leung & Li, Lishuai & Zhang, Zijun, 2021. "Early prediction of battery lifetime via a machine learning based framework," Energy, Elsevier, vol. 225(C).
    10. Lu, Zhenfeng & Fei, Zicheng & Wang, Benfei & Yang, Fangfang, 2024. "A feature fusion-based convolutional neural network for battery state-of-health estimation with mining of partial voltage curve," Energy, Elsevier, vol. 288(C).
    11. Hui Liang & Long Guo & Junhong Song & Yong Yang & Weige Zhang & Hongfeng Qi, 2018. "State-of-Charge Balancing Control of a Modular Multilevel Converter with an Integrated Battery Energy Storage," Energies, MDPI, vol. 11(4), pages 1-18, April.
    12. Angeles Cabañero, Maria & Altmann, Johannes & Gold, Lukas & Boaretto, Nicola & Müller, Jana & Hein, Simon & Zausch, Jochen & Kallo, Josef & Latz, Arnulf, 2019. "Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries," Energy, Elsevier, vol. 171(C), pages 1217-1228.
    13. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Liming Deng & Wenjing Shen & Kangkang Xu & Xuhui Zhang, 2024. "An Adaptive Modeling Method for the Prognostics of Lithium-Ion Batteries on Capacity Degradation and Regeneration," Energies, MDPI, vol. 17(7), pages 1-15, April.
    15. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    16. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    17. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    18. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    20. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.