IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp911-914.html
   My bibliography  Save this article

Development of photovoltaic technologies for global impact

Author

Listed:
  • Sinke, Wim C.

Abstract

Photovoltaic solar energy (PV) is expected to play a key role in the future global sustainable energy system. It has demonstrated impressive developments in terms of the scale of deployment, cost reduction and performance enhancement, most visibly over the past decade. PV conversion is and can be done with a wide range of materials, device architectures and technologies, at very different levels of technical and economic maturity. In this context it is customary to distinguish between first, second, third, and sometimes even fourth generation PV. This has initially been very useful to clarify the complex and, for many, confusing landscape of PV. In this paper it is argued, however, that in view of actual developments in PV over the past few decades there are good reasons to adopt another approach, that does more justice to the role and potential of existing and new PV concepts and technologies.

Suggested Citation

  • Sinke, Wim C., 2019. "Development of photovoltaic technologies for global impact," Renewable Energy, Elsevier, vol. 138(C), pages 911-914.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:911-914
    DOI: 10.1016/j.renene.2019.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119301740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoppmann, Joern & Huenteler, Joern & Girod, Bastien, 2014. "Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power," Research Policy, Elsevier, vol. 43(8), pages 1422-1441.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Wenbo & Ma, Tao & Shen, Lu & Li, Meng & Zhang, Yijie & Zhang, Wenjie, 2019. "Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions," Energy, Elsevier, vol. 188(C).
    2. Magni, Carlo Alberto & Marchioni, Andrea & Baschieri, Davide, 2022. "Impact of financing and payout policy on the economic profitability of solar photovoltaic plants," International Journal of Production Economics, Elsevier, vol. 244(C).
    3. Benedict Probst & Simon Touboul & Matthieu Glachant & Antoine Dechezleprêtre, 2021. "Global trends in the invention and diffusion of climate change mitigation technologies," Nature Energy, Nature, vol. 6(11), pages 1077-1086, November.
    4. Andrea Marchioni & Carlo Alberto Magni & Davide Baschieri, 2020. "Investment and Financing Perspectives for a Solar Photovoltaic Project," MIC 2020: The 20th Management International Conference,, University of Primorska Press.
    5. Ali, Hayder & Khan, Hassan Abbas, 2020. "Techno-economic evaluation of two 42 kWp polycrystalline-Si and CIS thin-film based PV rooftop systems in Pakistan," Renewable Energy, Elsevier, vol. 152(C), pages 347-357.
    6. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    7. João Paulo N. Torres & Ricardo A. Marques Lameirinhas & Catarina P. Correia V. Bernardo & Helena Isabel Veiga & Pedro Mendonça dos Santos, 2023. "A Discrete Electrical Model for Photovoltaic Solar Cells—d1MxP," Energies, MDPI, vol. 16(4), pages 1-14, February.
    8. Catarina Pinho Correia Valério Bernardo & Ricardo A. Marques Lameirinhas & João Paulo Neto Torres & António Baptista, 2023. "The Shading Influence on the Economic Viability of a Real Photovoltaic System Project," Energies, MDPI, vol. 16(6), pages 1-17, March.
    9. Eva Segura & Lidia M. Belmonte & Rafael Morales & José A. Somolinos, 2023. "A Strategic Analysis of Photovoltaic Energy Projects: The Case Study of Spain," Sustainability, MDPI, vol. 15(16), pages 1-37, August.
    10. Yun, Min Ju & Sim, Yeon Hyang & Lee, Dong Yoon & Cha, Seung I., 2022. "Reliable Lego®-style assembled stretchable photovoltaic module for 3-dimensional curved surface application," Applied Energy, Elsevier, vol. 323(C).
    11. Federico Minelli & Diana D’Agostino & Maria Migliozzi & Francesco Minichiello & Pierpaolo D’Agostino, 2023. "PhloVer: A Modular and Integrated Tracking Photovoltaic Shading Device for Sustainable Large Urban Spaces—Preliminary Study and Prototyping," Energies, MDPI, vol. 16(15), pages 1-35, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stern, Nicholas, 2018. "Public economics as if time matters: Climate change and the dynamics of policy," Journal of Public Economics, Elsevier, vol. 162(C), pages 4-17.
    2. Reichardt, Kristin & Rogge, Karoline S. & Negro, Simona, 2015. "Unpacking the policy processes for addressing systemic problems: The case of the technological innovation system of offshore wind in Germany," Working Papers "Sustainability and Innovation" S2/2015, Fraunhofer Institute for Systems and Innovation Research (ISI).
    3. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    4. Rik B Braams & Joeri H Wesseling & Albert J Meijer & Marko P Hekkert, 2022. "Understanding why civil servants are reluctant to carry out transition tasks [“Legitimation” and “development of positive Externalities”: Two Key Processes in the Formation Phase of Technological I," Science and Public Policy, Oxford University Press, vol. 49(6), pages 905-914.
    5. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    6. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    7. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    8. Xiaohua Song & Yun Long & Zhongfu Tan & Xubei Zhang & Leming Li, 2016. "The Optimization of Distributed Photovoltaic Comprehensive Efficiency Based on the Construction of Regional Integrated Energy Management System in China," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    9. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    10. Truffer, Bernhard & Schippl, Jens & Fleischer, Torsten, 2017. "Decentering technology in technology assessment: prospects for socio-technical transitions in electric mobility in Germany," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 34-48.
    11. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    12. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    13. Li, Yun & Nie, Dan & Zhao, Xingang & Li, Yanbin, 2017. "Market structure and performance: An empirical study of the Chinese solar cell industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 78-82.
    14. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    15. Florian Habermacher & Paul Lehmann, 2020. "Commitment Versus Discretion in Climate and Energy Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(1), pages 39-67, May.
    16. Do, Thang Nam & Burke, Paul J. & Baldwin, Kenneth G.H. & Nguyen, Chinh The, 2020. "Underlying drivers and barriers for solar photovoltaics diffusion: The case of Vietnam," Energy Policy, Elsevier, vol. 144(C).
    17. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    18. Yap, Xiao-Shan & Truffer, Bernhard, 2019. "Shaping selection environments for industrial catch-up and sustainability transitions: A systemic perspective on endogenizing windows of opportunity," Research Policy, Elsevier, vol. 48(4), pages 1030-1047.
    19. Caner Bakır, 2017. "Policy learning and policy change: learning from research citations," Policy Sciences, Springer;Society of Policy Sciences, vol. 50(4), pages 585-597, December.
    20. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:911-914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.