IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics0360544219316184.html
   My bibliography  Save this article

MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow

Author

Listed:
  • Wang, G.
  • Si, J.
  • Xu, M.
  • Mi, J.

Abstract

The present work is to investigate the MILD (moderate and intense low-oxygen dilution) combustion of a premixed methane jet in hot coflow against its conventional counterpart, i.e., a typical bluff-body flame, under identical inlet and boundary conditions. This paper demonstrates that the MILD combustion develops as a stable ‘flame’ lifting far downstream from the nozzle while the conventional flame evolves immediately behind the bluff body. More specifically, all chemical reactions are found to occur far more slowly over a greatly larger reaction zone for the MILD combustion than for the conventional one. Also, for the MILD combustion, the laminar flame speed (SL) is very small, far below the local flow speed (Ux), whereas chemical and mixing times are compatible so that the Damköhler number Da ∼1.0. In contrast, the conventional combustion takes place with SL ≥ Ux and Da = 10–1000. Moreover, the MILD combustion eventually emits little NOx, only less than 3% of the emission from the conventional counterpart. Fundamentally, the MILD combustion produces the NOx emission mainly through the N2O-intermediate and NNH routes while the thermal NOx mechanism dominates the conventional flame. In addition, this paper provides a comprehensive explanation to each of the above differences.

Suggested Citation

  • Wang, G. & Si, J. & Xu, M. & Mi, J., 2019. "MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316184
    DOI: 10.1016/j.energy.2019.115934
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219316184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
    2. Mi, Jianchun & Li, Pengfei & Zheng, Chuguang, 2011. "Impact of injection conditions on flame characteristics from a parallel multi-jet burner," Energy, Elsevier, vol. 36(11), pages 6583-6595.
    3. Cheong, Kin-Pang & Li, Pengfei & Wang, Feifei & Mi, Jianchun, 2017. "Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions," Energy, Elsevier, vol. 124(C), pages 652-664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheong, Kin-Pang & Wang, Guochang & Si, Jicang & Mi, Jianchun, 2021. "Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification," Energy, Elsevier, vol. 216(C).
    2. Orati, Edson & Veríssimo, Anton S. & Rocha, Ana Maura A. & Costa, Fernando S. & Carvalho, João A., 2022. "Experimental investigation of flameless combustion of biodiesel," Energy, Elsevier, vol. 255(C).
    3. Ren, Shoujun & Yang, Haolin & Wang, Xiaohan, 2021. "The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor," Energy, Elsevier, vol. 235(C).
    4. Zhao, Zhenghong & Zhang, Zewu & Zha, Xiaojian & Gao, Ge & Li, Xiaoshan & Wu, Fan & Luo, Cong & Zhang, Liqi, 2023. "Internal association between combustion behavior and NOx emissions of pulverized coal MILD-oxy combustion affected by adding H2O," Energy, Elsevier, vol. 263(PD).
    5. Fordoei, Esmaeil Ebrahimi & Boyaghchi, Fateme Ahmadi, 2022. "Influence of wall thermal conditions on the ignition, flame structure, and temperature behaviors in air-fuel, oxygen-enhanced, and oxy-fuel combustion under the MILD and high-temperature regimes," Energy, Elsevier, vol. 255(C).
    6. Shaker, Ahmad & Fordoei, E. Ebrahimi & Boyaghchi, Fateme Ahmadi, 2023. "Study of NO emission from CH4-air, oxygen-enriched, and oxy-CH4 combustion under HTC and MILD regimes: Impact of wall thermal condition in different oxidant temperature and dilution level," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheong, Kin-Pang & Wang, Guochang & Si, Jicang & Mi, Jianchun, 2021. "Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification," Energy, Elsevier, vol. 216(C).
    2. Tian, Ye & Zhou, Xiong & Ji, Xuanyu & Bai, Jisong & Yuan, Liang, 2019. "Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement," Energy, Elsevier, vol. 171(C), pages 149-160.
    3. Wang, Yi & Cheong, Kin-Pang & Wang, Junyang & Liu, Shaotong & Hu, Yong & Chyu, Minking & Mi, Jianchun, 2024. "Operational condition and furnace geometry for premixed C3H8/Air MILD combustion of high thermal-intensity and low emissions," Energy, Elsevier, vol. 288(C).
    4. Cheong, Kin-Pang & Wang, Guochang & Wang, Bo & Zhu, Rong & Ren, Wei & Mi, Jianchun, 2019. "Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace," Energy, Elsevier, vol. 170(C), pages 1181-1190.
    5. Wang, Feifei & Li, Pengfei & Mei, Zhenfeng & Zhang, Jianpeng & Mi, Jianchun, 2014. "Combustion of CH4/O2/N2 in a well stirred reactor," Energy, Elsevier, vol. 72(C), pages 242-253.
    6. Li, Bo & Shi, Baolu & Chu, Qingzhao & Zhao, Xiaoyao & Li, Junwei & Wang, Ningfei, 2019. "Characteristics of stoichiometric CH4/O2/CO2 flame up to the pure oxygen condition," Energy, Elsevier, vol. 168(C), pages 151-159.
    7. Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
    8. Tu, Yaojie & Xu, Shunta & Xu, Mingchen & Liu, Hao & Yang, Wenming, 2020. "Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8 atm," Energy, Elsevier, vol. 197(C).
    9. Jozaalizadeh, Toomaj & Toghraie, Davood, 2019. "Numerical investigation behavior of reacting flow for flameless oxidation technology of MILD combustion: Effect of fluctuating temperature of inlet co-flow," Energy, Elsevier, vol. 178(C), pages 530-537.
    10. Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
    11. Jia, Huiqiao & Qian, Xiang & Li, Jiarui & Yang, Jinling & Zou, Chun & Cao, Shiying & Yao, Hong, 2021. "The effects of O2 concentrations on the ignition and MILD combustion of intensely diluted C2H6 in a counterflow jets," Energy, Elsevier, vol. 228(C).
    12. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    13. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    14. Wang, Feifei & Li, Pengfei & Mi, Jianchun & Wang, Jinbo, 2018. "A refined global reaction mechanism for modeling coal combustion under moderate or intense low-oxygen dilution condition," Energy, Elsevier, vol. 157(C), pages 764-777.
    15. Lawal, Mohammed S. & Fairweather, Michael & Gogolek, Peter & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed & Williams, Alan, 2013. "CFD predictions of wake-stabilised jet flames in a cross-flow," Energy, Elsevier, vol. 53(C), pages 259-269.
    16. Lopez, Luis & Giusti, Andrea & Gutheil, Eva & Olguin, Hernan, 2022. "On the effects of the fuel injection phase on heat release and soot formation in counterflow flames," Energy, Elsevier, vol. 254(PB).
    17. Lee, Seungro & Shin, Cheol Hee & Choi, Sun & Kwon, Oh Chae, 2018. "Characteristics of NOx emissions of counterflow nonpremixed water-laden methane/air flames," Energy, Elsevier, vol. 164(C), pages 523-535.
    18. Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
    19. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    20. Jonghyun Kim & Jungsoo Park, 2020. "Conceptual Approach to Combustor Nozzle and Reformer Characteristics for Micro-Gas Turbine with an On-Board Reforming System: A Novel Thermal and Low Emission Cycle," Sustainability, MDPI, vol. 12(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.