IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v201y2020ics036054422030712x.html
   My bibliography  Save this article

Separation of IGCC syngas by using ZIF-8/dimethylacetamide slurry with high CO2 sorption capacity and sorption speed but low sorption heat

Author

Listed:
  • Yang, Ming-Ke
  • Han, Yu
  • Zou, En-Bao
  • Chen, Wan
  • Peng, Xiao-Wan
  • Dong, Bao-Can
  • Sun, Chang-Yu
  • Liu, Bei
  • Chen, Guang-Jin

Abstract

An absorption-adsorption hybrid method for separating the integrated gasification combined cycle (IGCC) syngas using ZIF-8/dimethylacetamide (DMAC) slurry was proposed. The viscosity of ZIF-8/DMAC slurries and its sorption performance of pure CO2 were investigated and one optimized slurry with moderate viscosity and high sorption capacity was proposed. Parallel absorption experiments show that the apparent solubility of CO2 in the slurry was doubled compared with that in pure liquid DMAC or propylene carbonate; it even overcomes that in aqueous monoethanolamine solutions at middle to high pressure range. More importantly, the slurry exhibits higher CO2 capture speed compared with conventional absorbents, while its desorption heat is only ∼16 kJ/mol. The equilibrium separation results on H2/CO2 mixtures using ZIF-8/DMAC slurry show that the selectivity of CO2 over H2 ranged from 22 to 119; it increases with decreasing temperature or pressure, increasing initial gas to slurry ratio or CO2 concentration in feed gas. Only 4 theoretical equilibrium stages are required to achieve a sufficient separation of IGCC syngas. Regeneration test shows that the crystal structure of recovered ZIF-8 remains intact after 6 sorption-desorption cycles. This work provides an efficient method for the separation of IGCC syngas at pressure of 2–5 MPa.

Suggested Citation

  • Yang, Ming-Ke & Han, Yu & Zou, En-Bao & Chen, Wan & Peng, Xiao-Wan & Dong, Bao-Can & Sun, Chang-Yu & Liu, Bei & Chen, Guang-Jin, 2020. "Separation of IGCC syngas by using ZIF-8/dimethylacetamide slurry with high CO2 sorption capacity and sorption speed but low sorption heat," Energy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:energy:v:201:y:2020:i:c:s036054422030712x
    DOI: 10.1016/j.energy.2020.117605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030712X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    2. Kim, Junghwan & Lee, Jisook & Lee, Yunje & Kim, Huiyong & Kim, Eunseok & Lee, Kwang Soon, 2019. "Evaluation of aqueous polyamines as CO2 capture solvents," Energy, Elsevier, vol. 187(C).
    3. Rosner, Fabian & Chen, Qin & Rao, Ashok & Samuelsen, Scott & Jayaraman, Ambal & Alptekin, Gokhan, 2019. "Thermo-economic analyses of IGCC power plants employing warm gas CO2 separation technology," Energy, Elsevier, vol. 185(C), pages 541-553.
    4. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    5. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    6. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    7. Chen, Wan & Chen, Mengzijing & Yang, Mingke & Zou, Enbao & Li, Hai & Jia, Chongzhi & Sun, Changyu & Ma, Qinglan & Chen, Guangjin & Qin, Huibo, 2019. "A new approach to the upgrading of the traditional propylene carbonate washing process with significantly higher CO2 absorption capacity and selectivity," Applied Energy, Elsevier, vol. 240(C), pages 265-275.
    8. Jordal, K. & Bredesen, R. & Kvamsdal, H.M. & Bolland, O., 2004. "Integration of H2-separating membrane technology in gas turbine processes for CO2 capture," Energy, Elsevier, vol. 29(9), pages 1269-1278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    2. Wang, Pengfei & Chen, Yiqi & Teng, Ying & An, Senyou & Li, Yun & Han, Meng & Yuan, Bao & Shen, Suling & Chen, Bin & Han, Songbai & Zhu, Jinlong & Zhu, Jianbo & Zhao, Yusheng & Xie, Heping, 2024. "A comprehensive review of hydrogen purification using a hydrate-based method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    3. Wan Chen & Minglong Wang & Shaowu Yang & Zixuan Huang & Mingke Yang & Xiaowan Peng & Bei Liu & Guangjin Chen, 2022. "Experimental Study on Breakthrough Separation for Hydrogen Recovery from Coke Oven Gas Using ZIF-8 Slurry," Energies, MDPI, vol. 15(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Pengfei & Chen, Yiqi & Teng, Ying & An, Senyou & Li, Yun & Han, Meng & Yuan, Bao & Shen, Suling & Chen, Bin & Han, Songbai & Zhu, Jinlong & Zhu, Jianbo & Zhao, Yusheng & Xie, Heping, 2024. "A comprehensive review of hydrogen purification using a hydrate-based method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    2. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    3. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    4. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    5. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.
    6. Horii, Shunsuke & Ohmura, Ryo, 2018. "Continuous separation of CO2 from a H2 + CO2 gas mixture using clathrate hydrate," Applied Energy, Elsevier, vol. 225(C), pages 78-84.
    7. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    8. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    9. Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
    10. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Wang, Yiwei & Du, Mei & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Chen, Bo & Chen, Guangjin & Sun, Changyu & Yang, Lanying, 2017. "Experiments and simulations for continuous recovery of methane from coal seam gas (CSG) utilizing hydrate formation," Energy, Elsevier, vol. 129(C), pages 28-41.
    12. Remi-Erempagamo Tariyemienyo Meindinyo & Thor Martin Svartaas, 2016. "Gas Hydrate Growth Kinetics: A Parametric Study," Energies, MDPI, vol. 9(12), pages 1-29, December.
    13. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    14. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    15. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    16. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    17. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    18. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    20. Weidong Chen & Qing He, 2016. "Intersectoral burden sharing of CO 2 mitigation in China in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s036054422030712x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.