IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v335y2023ics0306261923001216.html
   My bibliography  Save this article

Analysis on temperature vacuum swing adsorption integrated with heat pump for efficient carbon capture

Author

Listed:
  • Liu, W.
  • Ji, Y.
  • Wang, R.Q.
  • Zhang, X.J.
  • Jiang, L.

Abstract

Carbon capture and storage (CCS) is gathering the momentum to achieve the ultimate target of carbon neutrality. Temperature vacuum swing adsorption (TVSA) has uncovered its superiority due to large working capacity, CO2 purity and recovery rate. However, high energy demand in the regeneration process of adsorbent leads to the loss of net efficiency of coal-fired power plant (CFPP) after retrofitted. This paper initially proposes and evaluates an integrated system which is composed of an adsorption carbon capture unit (ADCCU) and a single-effect absorption heat transformer (SAHT). Then a general concept of sorption carbon capture integrated with heat pump could be introduced. Results indicates that CO2 purity and recovery rate of the integrated system vary from 91.20 % to 92.75 % and from 95.62 % to 98.11 % when flowrate range from 48 NL·min−1 to 60 NL·min−1. Under the condition of 140 °C regeneration temperature of ADCCU and 80 °C generation temperature of SAHT, exergy efficiency of SAHT achieves the maximum value of 85.28 %. Moreover, a vapor compression heat pump (VCHP) system is coupled to provide moderate temperature heat for SAHT when waste heat of CFPP is inadequate. The effect of waste heat and electricity consumed on performance of CFPP is also taken into consideration. When recovery rate is lower than 27 %, performance of the proposed integrated system is more favorable than that using steam evacuated from the turbine. It is demonstrated that heat pump assisted adsorption capture for CFPP may be a promising solution to reduce energy consumption in the near future.

Suggested Citation

  • Liu, W. & Ji, Y. & Wang, R.Q. & Zhang, X.J. & Jiang, L., 2023. "Analysis on temperature vacuum swing adsorption integrated with heat pump for efficient carbon capture," Applied Energy, Elsevier, vol. 335(C).
  • Handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261923001216
    DOI: 10.1016/j.apenergy.2023.120757
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zhihao & Deng, Shuai & Zhu, Yu & Zhao, Li & Yuan, Xiangzhou & Li, Shuangjun & Chen, Lijin, 2020. "Non-equilibrium thermodynamic analysis of adsorption carbon capture: Contributors, mechanisms and verification of entropy generation," Energy, Elsevier, vol. 208(C).
    2. El Hadri, Nabil & Quang, Dang Viet & Goetheer, Earl L.V. & Abu Zahra, Mohammad R.M., 2017. "Aqueous amine solution characterization for post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 185(P2), pages 1433-1449.
    3. Cudok, Falk & Giannetti, Niccolò & Ciganda, José L. Corrales & Aoyama, Jun & Babu, P. & Coronas, Alberto & Fujii, Tatsuo & Inoue, Naoyuki & Saito, Kiyoshi & Yamaguchi, Seiichi & Ziegler, Felix, 2021. "Absorption heat transformer - state-of-the-art of industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    5. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    6. Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
    7. Plaza, M.G. & Rubiera, F., 2019. "Evaluation of a novel multibed heat-integrated vacuum and temperature swing adsorption post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 250(C), pages 916-925.
    8. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
    9. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    10. L. Jiang & A. Gonzalez-Diaz & J. Ling-Chin & A. Malik & A. P. Roskilly & A. J. Smallbone, 2020. "PEF plastic synthesized from industrial carbon dioxide and biowaste," Nature Sustainability, Nature, vol. 3(9), pages 761-767, September.
    11. Xu, Z.Y. & Mao, H.C. & Liu, D.S. & Wang, R.Z., 2018. "Waste heat recovery of power plant with large scale serial absorption heat pumps," Energy, Elsevier, vol. 165(PB), pages 1097-1105.
    12. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, L. & Ji, Y. & Shi, W.K. & Fang, M.X. & Wang, T. & Zhang, X.J., 2023. "Adsorption heat/mass conversion cycle for carbon capture:Concept, thermodynamics and perspective," Energy, Elsevier, vol. 278(PA).
    2. Ge, Bingyao & Zhang, Man & Hu, Bin & Wu, Di & Zhu, Xuancan & Eicker, Ursula & Wang, Ruzhu, 2024. "Innovative process integrating high temperature heat pump and direct air capture," Applied Energy, Elsevier, vol. 355(C).
    3. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    4. Rumbo-Morales, Jesse Y. & Ortiz-Torres, Gerardo & Sarmiento-Bustos, Estela & Rosales, Antonio Márquez & Calixto-Rodriguez, Manuela & Sorcia-Vázquez, Felipe D.J. & Pérez-Vidal, Alan F. & Rodríguez-Cerd, 2024. "Purification and production of bio-ethanol through the control of a pressure swing adsorption plant," Energy, Elsevier, vol. 288(C).
    5. Liu, W. & Ji, Y. & Huang, Y. & Zhang, X.J. & Wang, T. & Fang, M.X. & Jiang, L., 2024. "Adsorption-based post-combustion carbon capture assisted by synergetic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, W. & Ji, Y. & Huang, Y. & Zhang, X.J. & Wang, T. & Fang, M.X. & Jiang, L., 2024. "Adsorption-based post-combustion carbon capture assisted by synergetic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Sang‐Jun Han & Jung‐Ho Wee, 2021. "Comparison of CO2 absorption performance between methyl‐di‐ ethanolamine and tri‐ethanolamine solution systems and its analysis in terms of amine molecules," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 445-460, June.
    4. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    5. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    6. Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Chen, Handing & Guo, Shunzhi & Song, Xudong & He, Tianbiao, 2024. "Design and evaluation of a municipal solid waste incineration power plant integrating with absorption heat pump," Energy, Elsevier, vol. 294(C).
    8. Zhang, Z.X. & Xu, H.J., 2023. "Thermodynamic modeling on multi-stage vacuum-pressure swing adsorption (VPSA) for direct air carbon capture with extreme dilute carbon dioxide," Energy, Elsevier, vol. 276(C).
    9. Song He & Yawen Zheng, 2024. "CO 2 Capture Cost Reduction Potential of the Coal-Fired Power Plants under High Penetration of Renewable Power in China," Energies, MDPI, vol. 17(9), pages 1-15, April.
    10. Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
    11. Zhang, Qi & Gao, Jintong & Wang, Yujie & Wang, Lin & Yu, Zaihai & Song, Dayong, 2019. "Exergy-based analysis combined with LCA for waste heat recovery in coal-fired CHP plants," Energy, Elsevier, vol. 169(C), pages 247-262.
    12. Wilkes, Mathew Dennis & Brown, Solomon, 2022. "Flexible CO2 capture for open-cycle gas turbines via vacuum-pressure swing adsorption: A model-based assessment," Energy, Elsevier, vol. 250(C).
    13. Cudok, Falk & Giannetti, Niccolò & Ciganda, José L. Corrales & Aoyama, Jun & Babu, P. & Coronas, Alberto & Fujii, Tatsuo & Inoue, Naoyuki & Saito, Kiyoshi & Yamaguchi, Seiichi & Ziegler, Felix, 2021. "Absorption heat transformer - state-of-the-art of industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
    15. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    16. Guo, Liheng & Ding, Yudong & Liao, Qiang & Zhu, Xun & Wang, Hong, 2022. "A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant," Energy, Elsevier, vol. 239(PA).
    17. Wu, Xiao & Xi, Han & Ren, Yuning & Lee, Kwang Y., 2021. "Power-carbon coordinated control of BFG-fired CCGT power plant integrated with solvent-based post-combustion CO2 capture," Energy, Elsevier, vol. 226(C).
    18. Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    19. Fu, Kun & Zheng, Mingzhen & Fu, Dong, 2023. "Low partial pressure CO2 capture in packed tower by EHA+Diglyme water-lean absorbent," Energy, Elsevier, vol. 266(C).
    20. Patel, Himanshu & Mohanty, Amar & Misra, Manjusri, 2024. "Post-combustion CO2 capture using biomass based activated porous carbon: Latest advances in synthesis protocol and economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261923001216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.