Post-combustion CO2 absorption-desorption performance of novel aqueous binary amine blend of Hexamethylenediamine (HMDA) and 2-Dimethylaminoethanol (DMAE)
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.130982
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- El Hadri, Nabil & Quang, Dang Viet & Goetheer, Earl L.V. & Abu Zahra, Mohammad R.M., 2017. "Aqueous amine solution characterization for post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 185(P2), pages 1433-1449.
- Shen, Yao & Jiang, Chenkai & Zhang, Shihan & Chen, Jun & Wang, Lidong & Chen, Jianmeng, 2018. "Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship," Applied Energy, Elsevier, vol. 230(C), pages 726-733.
- Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
- He, Xinwei & He, Hang & Barzagli, Francesco & Amer, Mohammad Waleed & Li, Chao'en & Zhang, Rui, 2023. "Analysis of the energy consumption in solvent regeneration processes using binary amine blends for CO2 capture," Energy, Elsevier, vol. 270(C).
- Kim, Junghwan & Lee, Jisook & Lee, Yunje & Kim, Huiyong & Kim, Eunseok & Lee, Kwang Soon, 2019. "Evaluation of aqueous polyamines as CO2 capture solvents," Energy, Elsevier, vol. 187(C).
- Sreedhar, I. & Nahar, Tanisha & Venugopal, A. & Srinivas, B., 2017. "Carbon capture by absorption – Path covered and ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1080-1107.
- Steven G. Gilmour, 2006. "Response Surface Designs for Experiments in Bioprocessing," Biometrics, The International Biometric Society, vol. 62(2), pages 323-331, June.
- Choubtashani, Shima & Rashidi, Hamed, 2023. "CO2 capture process intensification of water-lean methyl diethanolamine-piperazine solvent: Experiments and response surface modeling," Energy, Elsevier, vol. 267(C).
- Arshad, Nahyan & Alhajaj, Ahmed, 2023. "Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant," Energy, Elsevier, vol. 274(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hu, Hangtian & Fang, Mengxiang & Liu, Fei & Wang, Tao & Xia, Zhixiang & Zhang, Wei & Ge, Chunliang & Yuan, Jingjuan, 2022. "Novel alkanolamine-based biphasic solvent for CO2 capture with low energy consumption and phase change mechanism analysis," Applied Energy, Elsevier, vol. 324(C).
- Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
- Niu, Yingjie & Li, Ting & Barzagli, Francesco & Li, Chao'en & Amer, Mohammad W. & Zhang, Rui, 2024. "Fly ash as a cost-effective catalyst to promote sorbent regeneration for energy efficient CO2 capture," Energy, Elsevier, vol. 294(C).
- Meng, Fanli & Fu, Kun & Wang, Xueli & Ye, Bonan & Zhang, Pan & Wang, Lemeng & Fu, Dong, 2024. "Performance of a new water lean absorbent composed of EHA and DEGDEE in CO2 capture and regeneration," Energy, Elsevier, vol. 304(C).
- Gong, Huijuan & Chen, Zezhi & Yu, Huiqiang & Wu, Weili & Wang, Weixing & Pang, Honglei & Du, Mengfan, 2018. "Methane recovery in a combined amine absorption and gas steam boiler as a self-provided system for biogas upgrading," Energy, Elsevier, vol. 157(C), pages 744-751.
- Tatarczuk, Adam & Tańczyk, Marek & Więcław-Solny, Lucyna & Zdeb, Janusz, 2024. "Pilot plant results of amine-based carbon capture with heat integrated stripper," Applied Energy, Elsevier, vol. 367(C).
- Kim, Moon Keun & Baldini, Luca & Leibundgut, Hansjürg & Wurzbacher, Jan Andre, 2020. "Evaluation of the humidity performance of a carbon dioxide (CO2) capture device as a novel ventilation strategy in buildings," Applied Energy, Elsevier, vol. 259(C).
- Zhao, Huajun & Liu, Jingyi & Cheng, Shuaiqing & Wang, Rujie & Li, Qiangwei & An, Shanlong & Zhang, Shihan & Wang, Lidong, 2024. "Enhancing low-temperature desorption performance toward energy-saving CO2 capture via the multifunctional design of diethylethanolamine-based biphasic solvents," Energy, Elsevier, vol. 307(C).
- Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
- Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
- Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
- Chen, Yang & Wu, Ye & Liu, Xing & Ma, Jiliang & Liu, Daoyin & Chen, Xiaoping & Liu, Dong, 2024. "Energy, exergy and economic (3E) analysis of a novel integration process based on coal-fired power plant with CO2 capture & storage, CO2 refrigeration, and waste heat recovery," Energy, Elsevier, vol. 299(C).
- Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
- Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
- Li, Qiangwei & Huang, Xin & Li, Nuo & Qi, Tieyue & Wang, Rujie & Wang, Lidong & An, Shanlong, 2024. "Energy-efficient biphasic solvents for industrial CO2 capture: Absorption mechanism and stability characteristics," Energy, Elsevier, vol. 293(C).
- Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
- Han, Sung-Chul & Sung, Hail & Noh, Hye-Won & Mazari, Shaukat Ali & Moon, Jong-Ho & Kim, Kyung-Min, 2024. "Synergistic effect of blended amines on carbon dioxide absorption: Thermodynamic modeling and analysis of regeneration energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
- Slavu Nela & Dinca Cristian, 2017. "Economical aspects of the CCS technology integration in the conventional power plant," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 11(1), pages 168-180, July.
- Sang‐Jun Han & Jung‐Ho Wee, 2021. "Comparison of CO2 absorption performance between methyl‐di‐ ethanolamine and tri‐ethanolamine solution systems and its analysis in terms of amine molecules," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 445-460, June.
- Tian, Zhen & Zhou, Yihang & Zhang, Yuan & Gao, Wenzhong, 2024. "Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier," Energy, Elsevier, vol. 295(C).
More about this item
Keywords
Hexamethylenediamine; 2-Dimethylaminoethanol; Novel amine blend; Equilibrium CO2 loading; RSM modeling and optimization; Toxicity assessment;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224007540. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.