Synthesis and characterization of mixed alkanes microcapsules with phase change temperature below ice point for cryogenic thermal energy storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.115898
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chai, Luxiao & Wang, Xiaodong & Wu, Dezhen, 2015. "Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness," Applied Energy, Elsevier, vol. 138(C), pages 661-674.
- Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
- Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
- Wang, Tingyu & Wang, Shuangfeng & Luo, Ruilian & Zhu, Chunyu & Akiyama, Tomohiro & Zhang, Zhengguo, 2016. "Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage," Applied Energy, Elsevier, vol. 171(C), pages 113-119.
- He, Fang & Wang, Xiaodong & Wu, Dezhen, 2014. "New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor," Energy, Elsevier, vol. 67(C), pages 223-233.
- Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
- SarI, Ahmet & Alkan, Cemil & Karaipekli, Ali, 2010. "Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage," Applied Energy, Elsevier, vol. 87(5), pages 1529-1534, May.
- Yu, Qinghua & Tchuenbou-Magaia, Fideline & Al-Duri, Bushra & Zhang, Zhibing & Ding, Yulong & Li, Yongliang, 2018. "Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage," Applied Energy, Elsevier, vol. 211(C), pages 1190-1202.
- Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
- Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
- She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
- Al-Shannaq, Refat & Kurdi, Jamal & Al-Muhtaseb, Shaheen & Dickinson, Michelle & Farid, Mohammed, 2015. "Supercooling elimination of phase change materials (PCMs) microcapsules," Energy, Elsevier, vol. 87(C), pages 654-662.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sun, Shaofeng & Gao, Yan & Han, Na & Zhang, XingXiang & Li, Wei, 2021. "Reversible photochromic energy storage polyurea microcapsules via in-situ polymerization," Energy, Elsevier, vol. 219(C).
- Pei Cai & Youxue Jiang & He Wang & Liangyu Wu & Peng Cao & Yulong Zhang & Feng Yao, 2020. "Numerical Simulation on the Influence of the Longitudinal Fins on the Enhancement of a Shell-and-Tube Ice Storage Device," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
- Cui, Lulu & Li, Xin & Ren, Feihe & Lin, Hualin & Han, Sheng, 2024. "A novel pour point depressant with diesel cold-flow properties: Performance evaluation of benzene-containing ternary copolymers," Energy, Elsevier, vol. 288(C).
- Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin, Yaxue & Zhu, Chuqiao & Alva, Guruprasad & Fang, Guiyin, 2018. "Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage," Applied Energy, Elsevier, vol. 231(C), pages 494-501.
- Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
- Zhang, Ying & Wang, Xiaodong & Wu, Dezhen, 2016. "Microencapsulation of n-dodecane into zirconia shell doped with rare earth: Design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage," Energy, Elsevier, vol. 97(C), pages 113-126.
- Alva, Guruprasad & Huang, Xiang & Liu, Lingkun & Fang, Guiyin, 2017. "Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 203(C), pages 677-685.
- Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
- Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
- Zhang, Xiaoyu & Wang, Xiaodong & Wu, Dezhen, 2016. "Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectivene," Energy, Elsevier, vol. 111(C), pages 498-512.
- Yu, Qinghua & Tchuenbou-Magaia, Fideline & Al-Duri, Bushra & Zhang, Zhibing & Ding, Yulong & Li, Yongliang, 2018. "Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage," Applied Energy, Elsevier, vol. 211(C), pages 1190-1202.
- Chen, J. & Zhang, P., 2017. "Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media," Applied Energy, Elsevier, vol. 190(C), pages 868-879.
- Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Wang, Tingyu & Wang, Shuangfeng & Geng, Lixia & Fang, Yutang, 2016. "Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network," Applied Energy, Elsevier, vol. 179(C), pages 601-608.
- Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
- Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
- Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
- Tumirah, K. & Hussein, M.Z. & Zulkarnain, Z. & Rafeadah, R., 2014. "Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage," Energy, Elsevier, vol. 66(C), pages 881-890.
- Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
- Wu, Chang-Bo & Wu, Gang & Yang, Xi & Liu, Yu-Jing & Liang, Tao & Fu, Wei-Fei & Wang, Mang & Chen, Hong-Zheng, 2015. "Preparation of microencapsulated medium temperature phase change material of Tris(hydroxymethyl)methyl aminomethane@SiO2 with excellent cycling performance," Applied Energy, Elsevier, vol. 154(C), pages 361-368.
- Sitong Liu & Huanmei Yuan & Dengti Hu & Tonghe Li & Hao Bai, 2024. "Effect of Dropping Speed of Reducing Agent on the Preparation of LA/Ag Phase-Change Nanocapsules," Energies, MDPI, vol. 17(4), pages 1-12, February.
- Lashgari, Somayeh & Arabi, Hassan & Mahdavian, Ali Reza & Ambrogi, Veronica, 2017. "Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell," Applied Energy, Elsevier, vol. 190(C), pages 612-622.
- Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
More about this item
Keywords
Alkanes; Supercooling; In-situ polymerization; Microencapsulated phase change materials; Encapsulation efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219315762. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.