IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5214-d865761.html
   My bibliography  Save this article

Multiple Fuel Injection Strategies for Compression Ignition Engines

Author

Listed:
  • Tyler Simpson

    (Department of Mechanical Engineering, University of Kansas, 3138 Learned Hall, 1530 W. 15th Street, Lawrence, KS 66045, USA)

  • Christopher Depcik

    (Department of Mechanical Engineering, University of Kansas, 3138 Learned Hall, 1530 W. 15th Street, Lawrence, KS 66045, USA)

Abstract

Until the early 1990s, the predominant method of fuel delivery for compression ignition engines was the mechanical pump-line-nozzle system. These systems typically consisted of a cam-driven pump that would send pressurized fuel to the fuel injectors where injection timing was fixed according to the pressure needed to overcome the spring pressure of the injector needle. These configurations were robust; however, they were limited to a single fuel injection event per thermodynamic cycle and respectively low injection pressures of 200–300 bar. Due to their limited flexibility, a poorly mixed and highly stratified air fuel mixture would result in and produce elevated levels of both nitrogen oxides and particulate matter. The onset of stringent emissions standards caused the advancement of fuel injection technology and eventually led to the proliferation of high-pressure common rail electronic fuel injection systems. This system brought about two major advantages, the first being operation at fuel pressures up to 2500 bar. This allowed better atomization and fuel spray penetration that improves mixing and the degree of charge homogenization of the air fuel mixture. The second is that the electronic fuel injector allows for flexible and precise injection timing and quantity while allowing for multiple fuel injection events per thermodynamic cycle. To supply guidance in this area, this effort reviews the experimental history of multiple fuel injection strategies involving both diesel and biodiesel fuels through 2019. Summaries are supplied for each fuel highlighting literature consensus on the mechanisms that influence noise, performance, and emissions based on timing, amount, and type of fuel injected during multiple fuel injection strategies.

Suggested Citation

  • Tyler Simpson & Christopher Depcik, 2022. "Multiple Fuel Injection Strategies for Compression Ignition Engines," Energies, MDPI, vol. 15(14), pages 1-29, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5214-:d:865761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2011. "Effects of multiple-injection strategies on overall spray behavior, combustion, and emissions reduction characteristics of biodiesel fuel," Applied Energy, Elsevier, vol. 88(1), pages 88-98, January.
    2. Mohan, Balaji & Yang, Wenming & Yu, Wenbin & Tay, Kun Lin & Chou, Siaw Kiang, 2015. "Numerical investigation on the effects of injection rate shaping on combustion and emission characteristics of biodiesel fueled CI engine," Applied Energy, Elsevier, vol. 160(C), pages 737-745.
    3. Mangus, Michael & Kiani, Farshid & Mattson, Jonathan & Tabakh, Daniel & Petka, James & Depcik, Christopher & Peltier, Edward & Stagg-Williams, Susan, 2015. "Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection," Energy, Elsevier, vol. 89(C), pages 932-945.
    4. Deqing Mei & Qisong Yu & Zhengjun Zhang & Shan Yue & Lizhi Tu, 2021. "Effects of Two Pilot Injection on Combustion and Emissions in a PCCI Diesel Engine," Energies, MDPI, vol. 14(6), pages 1-14, March.
    5. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    6. How, H.G. & Teoh, Y.H. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Chuah, H.G. & Alabdulkarem, A., 2019. "Impact of two-stage injection fuel quantity on engine-out responses of a common-rail diesel engine fueled with coconut oil methyl esters-diesel fuel blends," Renewable Energy, Elsevier, vol. 139(C), pages 515-529.
    7. Jeon, Joonho & Park, Sungwook, 2015. "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel," Applied Energy, Elsevier, vol. 160(C), pages 581-591.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    2. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    3. Nikita Zuev & Andrey Kozlov & Alexey Terenchenko & Kirill Karpukhin & Ulugbek Azimov, 2021. "Detailed Injection Strategy Analysis of a Heavy-Duty Diesel Engine Running on Rape Methyl Ester," Energies, MDPI, vol. 14(13), pages 1-25, June.
    4. Bhowmick, Pathikrit & Jeevanantham, A.K. & Ashok, B. & Nanthagopal, K. & Perumal, D. Arumuga & Karthickeyan, V. & Vora, K.C. & Jain, Aatmesh, 2019. "Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine," Energy, Elsevier, vol. 181(C), pages 1094-1113.
    5. Chakraborty, Amitav & Biswas, Srijit & Kakati, Dipankar & Banerjee, Rahul, 2022. "Leveraging hydrogen as the low reactive component in the optimization of the PPCI-RCCI transition regimes in an existing diesel engine under varying injection phasing and reactivity stratification str," Energy, Elsevier, vol. 244(PA).
    6. Biswas, Srijit & Kakati, Dipankar & Chakraborti, Prasun & Banerjee, Rahul, 2022. "Performance-emission-stability mapping of CI engine in RCCI-PCCI modes under varying ethanol and CNG induced reactivity profiles: A comparative study through experimental and optimization perspectives," Energy, Elsevier, vol. 254(PB).
    7. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    9. Kim, Hyung Jun & Jo, Seongin & Lee, Jong-Tae & Park, Suhan, 2020. "Biodiesel fueled combustion performance and emission characteristics under various intake air temperature and injection timing conditions," Energy, Elsevier, vol. 206(C).
    10. Payri, R. & Salvador, F.J. & Gimeno, J. & De la Morena, J., 2011. "Influence of injector technology on injection and combustion development - Part 1: Hydraulic characterization," Applied Energy, Elsevier, vol. 88(4), pages 1068-1074, April.
    11. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    12. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    13. Ashok, B. & Usman, Kaisan Muhammad & Vignesh, R. & Umar, U.A., 2022. "Model-based injector control map development to improve CRDi engine performance and emissions for eucalyptus biofuel," Energy, Elsevier, vol. 246(C).
    14. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    15. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    16. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    17. Setiawan, Ardhika & Lim, Ocktaeck, 2024. "Investigation of the combustion characteristics of a dual direct injection fuel (diesel-propane) strategy on a rapid compression expansion machine," Energy, Elsevier, vol. 304(C).
    18. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    19. José Javier López & Oscar A. de la Garza & Joaquín De la Morena & Simón Martínez-Martínez, 2021. "Influence of Cavitation in Common-Rail Diesel Nozzles on the Soot Formation Process through Measuring Soot Emissions," Energies, MDPI, vol. 14(19), pages 1-11, October.
    20. Xingyu Liang & Ziyang Liu & Kun Wang & Xiaohui Wang & Zhijie Zhu & Chaoyang Xu & Bo Liu, 2021. "Impact of Pilot Injection on Combustion and Emission Characteristics of a Low-Speed Two-Stroke Marine Diesel Engine," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5214-:d:865761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.