IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp303-314.html
   My bibliography  Save this article

Soft-constrained robust model predictive control of a plate heat exchanger: Experimental analysis

Author

Listed:
  • Oravec, Juraj
  • Bakošová, Monika
  • Galčíková, Lenka
  • Slávik, Michal
  • Horváthová, Michaela
  • Mészáros, Alajos

Abstract

Real processes with heat exchange have usually complex behaviour and are energy intensive. In practical applications, the process variables are always bounded, and it is suitable to include these boundaries into the controller design. The soft-constrained robust model predictive controller has been designed to improve the control performance and energy consumption in comparison with the robust model predictive control with only hard constraints. Experimental application of soft-constrained robust model predictive control (SCR MPC) for a laboratory plate heat exchanger is presented in this paper. The plate heat exchanger is a non-linear process with asymmetric dynamics and is modelled as a system with parametric uncertainties. The controlled variable is the temperature of the heated fluid at the outlet of the heat exchanger and the manipulated variable is the volumetric flow rate of the heating fluid. The actuator is a peristaltic pump and the influence of the linear and non-linear actuator characteristics on the control performance is also investigated. The set-point tracking using SCR MPC is studied for the laboratory plate heat exchanger in an extensive case study. The experimental results confirmed the improvement of the control responses and reduction of energy consumption by introducing the soft constraints into MPC design.

Suggested Citation

  • Oravec, Juraj & Bakošová, Monika & Galčíková, Lenka & Slávik, Michal & Horváthová, Michaela & Mészáros, Alajos, 2019. "Soft-constrained robust model predictive control of a plate heat exchanger: Experimental analysis," Energy, Elsevier, vol. 180(C), pages 303-314.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:303-314
    DOI: 10.1016/j.energy.2019.05.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219309703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
    2. Pospíšil, Jiří & Špiláček, Michal & Kudela, Libor, 2018. "Potential of predictive control for improvement of seasonal coefficient of performance of air source heat pump in Central European climate zone," Energy, Elsevier, vol. 154(C), pages 415-423.
    3. Oravec, Juraj & Bakošová, Monika & Trafczynski, Marian & Vasičkaninová, Anna & Mészáros, Alajos & Markowski, Mariusz, 2018. "Robust model predictive control and PID control of shell-and-tube heat exchangers," Energy, Elsevier, vol. 159(C), pages 1-10.
    4. Yang, Tingting & Wang, Wei & Zeng, Deliang & Liu, Jizhen & Cui, Can, 2017. "Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation," Energy, Elsevier, vol. 135(C), pages 394-404.
    5. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    6. Ponce, Carolina V. & Sáez, Doris & Bordons, Carlos & Núñez, Alfredo, 2016. "Dynamic simulator and model predictive control of an integrated solar combined cycle plant," Energy, Elsevier, vol. 109(C), pages 974-986.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oravec, Juraj & Horváthová, Michaela & Bakošová, Monika, 2020. "Energy efficient convex-lifting-based robust control of a heat exchanger," Energy, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oravec, Juraj & Bakošová, Monika & Trafczynski, Marian & Vasičkaninová, Anna & Mészáros, Alajos & Markowski, Mariusz, 2018. "Robust model predictive control and PID control of shell-and-tube heat exchangers," Energy, Elsevier, vol. 159(C), pages 1-10.
    2. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    3. Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
    4. O'Hegarty, R. & Kinnane, O. & Lennon, D. & Colclough, S., 2022. "Air-to-water heat pumps: Review and analysis of the performance gap between in-use and product rated performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    6. Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
    7. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    8. Çetin, Gürcan & Özkaraca, Osman & Keçebaş, Ali, 2021. "Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    10. Trafczynski, Marian & Markowski, Mariusz & Urbaniec, Krzysztof, 2019. "Energy saving potential of a simple control strategy for heat exchanger network operation under fouling conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 355-364.
    11. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    12. Rödder, Maximilian & Frank, Lena & Kirschner, Daniel & Neef, Matthias & Adam, Mario, 2018. "EnergiBUS4home – Sustainable energy resourcing in low-energy buildings," Energy, Elsevier, vol. 159(C), pages 638-647.
    13. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    14. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    15. Xin Wang & Gang Zhao & Xinhe Qu & Xiaoyong Yang & Jie Wang & Peng Wang, 2023. "Influence of Cooling Water Parameters on the Thermal Performance of the Secondary Circuit System of a Modular High-Temperature Gas-Cooled Reactor Nuclear Power Plant," Energies, MDPI, vol. 16(18), pages 1-17, September.
    16. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    17. Wenhui Huang & Lei Chen & Weijia Wang & Lijun Yang & Xiaoze Du, 2020. "Cooling Performance Optimization of Direct Dry Cooling System Based on Partition Adjustment of Axial Flow Fans," Energies, MDPI, vol. 13(12), pages 1-22, June.
    18. Zhiling Luo & Qi Yao, 2022. "Multi-Model-Based Predictive Control for Divisional Regulation in the Direct Air-Cooling Condenser," Energies, MDPI, vol. 15(13), pages 1-18, June.
    19. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Chandrasekharan, Sreepradha & Panda, Rames C. & Swaminathan, Bhuvaneswari Natrajan & Panda, Atanu, 2018. "Operational control of an integrated drum boiler of a coal fired thermal power plant," Energy, Elsevier, vol. 159(C), pages 977-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:303-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.