IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019630.html
   My bibliography  Save this article

Investigation of the forced-convection heat-transfer in the boiler flue-gas heat recovery units employing the real-time measured database

Author

Listed:
  • Zhang, Wei
  • Wang, Suilin
  • Mu, Lianbo
  • Jamshidnia, Hamid
  • Zhao, Xudong

Abstract

Extra moistures condensation and extraction from the boiler flue-gas have been proven to be an effective measure to enhance the thermal efficiency of the boiler system. Previous researches on the condensing flue-gas heat recovery unit was based on the controlled lab condition or instant site measurement which was unable to reflect the long-term real performance of the boiler system with flue-gas heat recovery units. This research employed the real-time measurement database established between 2008 and 2019 to investigate the heat transfer at the flue-gas heat recovery unit. This solution can evaluate the long-term dynamic heat-transfer performance of the flue-gas heat recovery unit. A semi-experimental formula was established to address the relationship between the dew point temperature and heat transfer coefficient of the flue gas. It was found that the heat-transfer coefficient is sensitive to the inlet temperature of cooling water. Further, a dimensionless formula was established to address the relation among the convection heat-transfer coefficient and its other operational parameters. The all-applicable criterion equation that can judge the heat and mass transfer performance of flue-gas heat recovery units, and assess the energy saving potential of the boiler system with such a unit.

Suggested Citation

  • Zhang, Wei & Wang, Suilin & Mu, Lianbo & Jamshidnia, Hamid & Zhao, Xudong, 2022. "Investigation of the forced-convection heat-transfer in the boiler flue-gas heat recovery units employing the real-time measured database," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019630
    DOI: 10.1016/j.energy.2021.121715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaojun & He, Boshu & Sun, Shaoyang & Wu, Ying & Yan, Na & Yan, Linbo & Pei, Xiaohui, 2012. "Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant," Energy, Elsevier, vol. 48(1), pages 196-202.
    2. Zhou, Huairong & Li, Hongwei & Duan, Runhao & Yang, Qingchun, 2020. "An integrated scheme of coal-assisted oil shale efficient pyrolysis and high-value conversion of pyrolysis oil," Energy, Elsevier, vol. 196(C).
    3. Ma, Youfu & Wang, Ziwen & Lyu, Junfu & Wang, Zirui, 2020. "Techno-economic evaluation of the novel hot air recirculation process for exhaust heat recovery from a 600 MW hard-coal-fired boiler," Energy, Elsevier, vol. 200(C).
    4. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mu, Lianbo & Wang, Suilin & Lu, Junhui & Liu, Guichang & Zhao, Liqiu & Lan, Yuncheng, 2023. "Effect of flue gas condensing waste heat recovery and its pressure drop on energy saving and carbon reduction for refinery heating furnace," Energy, Elsevier, vol. 279(C).
    2. Mu, Lianbo & Wang, Suilin & Lu, Junhui & Li, Congna & Lan, Yuncheng & Liu, Guichang & Zhang, Tong, 2024. "Effect of hydrogen-enriched natural gas on flue gas waste heat recovery potential and condensing heat exchanger performance," Energy, Elsevier, vol. 286(C).
    3. Dezhi Jiang & Haoxian Yu & Zhihan Wang & Adam Glowacz & Grzegorz Królczyk & Zhixiong Li, 2022. "Influence of Exhaust Temperature and Flow Velocity of Marine Diesel Engines on Exhaust Gas Boiler Heat Transfer Performance," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    4. Lianbo Mu & Suilin Wang & Guichang Liu & Junhui Lu & Yuncheng Lan & Liqiu Zhao & Jincheng Liu, 2023. "On-Site Experimental Study on Low-Temperature Deep Waste Heat Recovery of Actual Flue Gas from the Reformer of Hydrogen Production," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    5. Zhao, Qiaonan & Yang, Qiguo & Xu, Hongtao & Jiao, Anyao & Pan, Donghui, 2023. "Experimental study on pollutant emission characteristics of diesel urea-based selective catalytic reduction system based on corrugated substrate," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    2. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    3. Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
    4. Oluleye, Gbemi & Jobson, Megan & Smith, Robin, 2015. "A hierarchical approach for evaluating and selecting waste heat utilization opportunities," Energy, Elsevier, vol. 90(P1), pages 5-23.
    5. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    6. Sun, Fangtian & Zhao, Jinzi & Fu, Lin & Sun, Jian & Zhang, Shigang, 2017. "New district heating system based on natural gas-fired boilers with absorption heat exchangers," Energy, Elsevier, vol. 138(C), pages 405-418.
    7. Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
    8. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    9. Feng, Yupeng & Li, Yuzhong & Cui, Lin & Yan, Lifan & Zhao, Cheng & Dong, Yong, 2019. "Cold condensing scrubbing method for fine particle reduction from saturated flue gas," Energy, Elsevier, vol. 171(C), pages 1193-1205.
    10. Stevanovic, Vladimir D. & Wala, Tadeusz & Muszynski, Slawomir & Milic, Milos & Jovanovic, Milorad, 2014. "Efficiency and power upgrade by an additional high pressure economizer installation at an aged 620 MWe lignite-fired power plant," Energy, Elsevier, vol. 66(C), pages 907-918.
    11. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system," Energy, Elsevier, vol. 72(C), pages 459-475.
    12. Wang, Chaojun & He, Boshu & Yan, Linbo & Pei, Xiaohui & Chen, Shinan, 2014. "Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant," Energy, Elsevier, vol. 65(C), pages 80-90.
    13. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    14. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    15. Han, Xiaoqu & Liu, Ming & Zhai, Mengxu & Chong, Daotong & Yan, Junjie & Xiao, Feng, 2015. "Investigation on the off-design performances of flue gas pre-dried lignite-fired power system integrated with waste heat recovery at variable external working conditions," Energy, Elsevier, vol. 90(P2), pages 1743-1758.
    16. Tian, En & He, Ya-Ling & Tao, Wen-Quan, 2017. "Research on a new type waste heat recovery gravity heat pipe exchanger," Applied Energy, Elsevier, vol. 188(C), pages 586-594.
    17. Li, Yong & Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Han, Wei, 2018. "Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater," Energy, Elsevier, vol. 149(C), pages 639-661.
    18. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    19. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
    20. Siviter, J. & Montecucco, A. & Knox, A.R., 2015. "Rankine cycle efficiency gain using thermoelectric heat pumps," Applied Energy, Elsevier, vol. 140(C), pages 161-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.