IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223017905.html
   My bibliography  Save this article

Techno-economic and energetic assessment of an innovative energy-saving separation process for electronic-grade acetone purification

Author

Listed:
  • Zhou, Hao
  • Li, Hong
  • Geng, Xueli
  • Gao, Xin

Abstract

With the impact of covid-19 and geopolitical instability, the price of energy and medical-related chemicals are increased. Acetone is used as the main material for the synthesis of important disinfectant isopropanol, which the price is influenced by covid-19 impact. The research on acetone purification, especially on the acetone refining section in the cumene hydroperoxide process is of great importance, which is high in energy cost but the most popular method for acetone production. This paper provided novel energy-saving acetone purification processes with heat integration, heat recovery, and molecular sieve adsorption, and made comprehensive research of different schemes applications with optimization. A modified TAC calculation model for adsorption units is first proposed in this paper, which includes the calculation of adsorption unit cost, molecular sieve loss, and molecular sieve regeneration cost. CO2 emission and thermodynamic efficiency of all the processes are compared. A semi-quantitative analysis is used to compare the relative industrial versatility and process controllability. The results show that the combination of adsorption and heat integration achieves a decrease of 27.75% in energy consumption, 15.30% in TAC, 7.09% in CO2 emission, and a 22.62% relative increase in thermodynamic efficiency.

Suggested Citation

  • Zhou, Hao & Li, Hong & Geng, Xueli & Gao, Xin, 2023. "Techno-economic and energetic assessment of an innovative energy-saving separation process for electronic-grade acetone purification," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017905
    DOI: 10.1016/j.energy.2023.128396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gadalla, M. & Olujić, Ž. & Jobson, M. & Smith, R., 2006. "Estimation and reduction of CO2 emissions from crude oil distillation units," Energy, Elsevier, vol. 31(13), pages 2398-2408.
    2. Yang, Deming & Wan, Dehao & Yun, Yi & Yang, Shuzhuang, 2023. "Energy-saving distillation process for mixed trichlorobenzene based on ORC coupled MVR heat pump technology," Energy, Elsevier, vol. 262(PB).
    3. Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.
    4. Bütün, Hür & Kantor, Ivan & Maréchal, François, 2018. "A heat integration method with multiple heat exchange interfaces," Energy, Elsevier, vol. 152(C), pages 476-488.
    5. Jia, Zhijie & Wen, Shiyan & Lin, Boqiang, 2021. "The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China," Applied Energy, Elsevier, vol. 302(C).
    6. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    7. Yang, Ao & Su, Yang & Chien, I-Lung & Jin, Saimeng & Yan, Chenglei & Wei, Shun'an & Shen, Weifeng, 2019. "Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane," Energy, Elsevier, vol. 186(C).
    8. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    9. Y., Nandakishora & Sahoo, Ranjit K. & S., Murugan & Gu, Sai, 2023. "4E analysis of the cryogenic CO2 separation process integrated with waste heat recovery," Energy, Elsevier, vol. 278(PA).
    10. Jana, Amiya K., 2010. "Heat integrated distillation operation," Applied Energy, Elsevier, vol. 87(5), pages 1477-1494, May.
    11. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    12. Jiang, Peng & Fan, Yee Van & Klemeš, Jiří Jaromír, 2021. "Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    2. Feng Wang & Min Wu, 2021. "The Impacts of COVID-19 on China’s Economy and Energy in the Context of Trade Protectionism," IJERPH, MDPI, vol. 18(23), pages 1-23, December.
    3. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    4. Costa, Vinicius B.F. & Pereira, Lígia C. & Andrade, Jorge V.B. & Bonatto, Benedito D., 2022. "Future assessment of the impact of the COVID-19 pandemic on the electricity market based on a stochastic socioeconomic model," Applied Energy, Elsevier, vol. 313(C).
    5. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).
    6. Jana, Amiya K. & Maiti, Debadrita, 2013. "An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system," Energy, Elsevier, vol. 57(C), pages 527-534.
    7. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    8. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    9. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    10. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    11. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    12. Michal Brzezinski, 2021. "The impact of past pandemics on CO$_2$ emissions and transition to renewable energy," Papers 2104.14199, arXiv.org.
    13. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    14. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    15. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    16. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    17. Chaofeng Tang & Kentaka Aruga, 2021. "Effects of the 2008 Financial Crisis and COVID-19 Pandemic on the Dynamic Relationship between the Chinese and International Fossil Fuel Markets," JRFM, MDPI, vol. 14(5), pages 1-11, May.
    18. Feng, Chun-Chiang & Chang, Kuei-Feng & Lin, Jin-Xu & Lee, Tsung-Chen & Lin, Shih-Mo, 2022. "Toward green transition in the post Paris Agreement era: The case of Taiwan," Energy Policy, Elsevier, vol. 165(C).
    19. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    20. Kiran, Bandaru & Jana, Amiya K. & Samanta, Amar Nath, 2012. "A novel intensified heat integration in multicomponent distillation," Energy, Elsevier, vol. 41(1), pages 443-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.