IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5046-d616025.html
   My bibliography  Save this article

State-of-the-Art Review of Positive Energy Building and Community Systems

Author

Listed:
  • Gokula Manikandan Senthil Kumar

    (Renewable Energy Research Group (RERG), Department of Building Services Engineering, Faculty of Construction and Environment, The Hong Kong Polytechnic University, Hong Kong, China)

  • Sunliang Cao

    (Renewable Energy Research Group (RERG), Department of Building Services Engineering, Faculty of Construction and Environment, The Hong Kong Polytechnic University, Hong Kong, China
    Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hong Kong, China
    Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, China)

Abstract

A positive energy system that produces more renewable energy than its demand while ensuring appropriate comfort levels is an excellent path towards increasing the portion of renewable energy, reducing carbon emission, and increasing the energy system’s overall performance. In particular, it has been believed as step forward towards zero energy systems. Recent progress in positive energy building and community levels is gaining interest among different stakeholders. However, an inadequate understanding of the positive energy system is widely noticed in many projects, and a shortage of standard details on the positive energy system still prevails in the research community. Therefore, a state-of-the-art review of positive energy building and community is conducted in this paper. Firstly, this paper begins with the definitions and concepts of positive energy buildings and communities. Secondly, it comprehensively describes the energy supplies, demands, indicators, storage, energy management, roles of stakeholders, and bottlenecks of positive energy systems. Thirdly, the main differences between positive energy buildings and communities are summarized. Fourthly, the impact of smart energy grids and new energy vehicles on the positive energy buildings and communities is derived. As a conclusion, this paper shows that even though all the energy-efficient buildings such as passive buildings, nearly zero energy buildings, zero energy buildings, positive energy buildings look like an up-trending scale of renewable penetration, considerable differences are visible among all, and the same thing applies to the community level. Furthermore, considerable differences exist when comparing between positive buildings and communities regarding both the technical and economic perspectives.

Suggested Citation

  • Gokula Manikandan Senthil Kumar & Sunliang Cao, 2021. "State-of-the-Art Review of Positive Energy Building and Community Systems," Energies, MDPI, vol. 14(16), pages 1-54, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5046-:d:616025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Stenzel, Peter & Linssen, Jochen, 2016. "Concept and potential of pumped hydro storage in federal waterways," Applied Energy, Elsevier, vol. 162(C), pages 486-493.
    3. Wang, Huilong & Wang, Shengwei & Tang, Rui, 2019. "Development of grid-responsive buildings: Opportunities, challenges, capabilities and applications of HVAC systems in non-residential buildings in providing ancillary services by fast demand responses," Applied Energy, Elsevier, vol. 250(C), pages 697-712.
    4. Paolo Civiero & Jordi Pascual & Joaquim Arcas Abella & Ander Bilbao Figuero & Jaume Salom, 2021. "PEDRERA. Positive Energy District Renovation Model for Large Scale Actions," Energies, MDPI, vol. 14(10), pages 1-21, May.
    5. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    6. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    7. Xue, Xue & Wang, Shengwei & Yan, Chengchu & Cui, Borui, 2015. "A fast chiller power demand response control strategy for buildings connected to smart grid," Applied Energy, Elsevier, vol. 137(C), pages 77-87.
    8. Caro-Ruiz, C. & Lombardi, P. & Richter, M. & Pelzer, A. & Komarnicki, P. & Pavas, A. & Mojica-Nava, E., 2019. "Coordination of optimal sizing of energy storage systems and production buffer stocks in a net zero energy factory," Applied Energy, Elsevier, vol. 238(C), pages 851-862.
    9. Hong, Seung Ho & Yu, Mengmeng & Huang, Xuefei, 2015. "A real-time demand response algorithm for heterogeneous devices in buildings and homes," Energy, Elsevier, vol. 80(C), pages 123-132.
    10. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
    11. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    12. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    13. Severin Beucker & Joseph D. Bergesen & Thomas Gibon, 2016. "Building Energy Management Systems: Global Potentials and Environmental Implications of Deployment," Journal of Industrial Ecology, Yale University, vol. 20(2), pages 223-233, April.
    14. Srinivasan, Dipti & Rajgarhia, Sanjana & Radhakrishnan, Bharat Menon & Sharma, Anurag & Khincha, H.P., 2017. "Game-Theory based dynamic pricing strategies for demand side management in smart grids," Energy, Elsevier, vol. 126(C), pages 132-143.
    15. Romero Rodríguez, Laura & Sánchez Ramos, José & Álvarez Domínguez, Servando & Eicker, Ursula, 2018. "Contributions of heat pumps to demand response: A case study of a plus-energy dwelling," Applied Energy, Elsevier, vol. 214(C), pages 191-204.
    16. Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2014. "Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices," Applied Energy, Elsevier, vol. 113(C), pages 230-247.
    17. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
    18. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    19. Paola Clerici Maestosi, 2021. "Smart Cities and Positive Energy Districts: Urban Perspectives in 2020," Energies, MDPI, vol. 14(9), pages 1-5, April.
    20. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    21. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    22. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    23. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    24. Lydon, G.P. & Hofer, J. & Svetozarevic, B. & Nagy, Z. & Schlueter, A., 2017. "Coupling energy systems with lightweight structures for a net plus energy building," Applied Energy, Elsevier, vol. 189(C), pages 310-326.
    25. Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
    26. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Praveen Cheekatamarla & Kashif Nawaz, 2022. "Global Building Decarbonization Trends and Strategies," Energies, MDPI, vol. 15(22), pages 1-3, November.
    2. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Xinman Guo & Sunliang Cao & Yang Xu & Xiaolin Zhu, 2021. "The Feasibility of Using Zero-Emission Electric Boats to Enhance the Techno-Economic Performance of an Ocean-Energy-Supported Coastal Hotel Building," Energies, MDPI, vol. 14(24), pages 1-42, December.
    4. Bjelland, David & Brozovsky, Johannes & Hrynyszyn, Bozena Dorota, 2024. "Systematic review: Upscaling energy retrofitting to the multi-building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    5. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Kumar, Gokula Manikandan Senthil & Cao, Sunliang, 2023. "Leveraging energy flexibilities for enhancing the cost-effectiveness and grid-responsiveness of net-zero-energy metro railway and station systems," Applied Energy, Elsevier, vol. 333(C).
    7. Massimiliano Viglioglia & Matteo Giovanardi & Riccardo Pollo & Pier Paolo Peruccio, 2021. "Smart District and Circular Economy: The Role of ICT Solutions in Promoting Circular Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    2. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    3. Reda, Francesco & Fatima, Zarrin, 2019. "Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries," Applied Energy, Elsevier, vol. 237(C), pages 598-617.
    4. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    6. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    7. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.
    8. Kumar, Gokula Manikandan Senthil & Cao, Sunliang, 2023. "Leveraging energy flexibilities for enhancing the cost-effectiveness and grid-responsiveness of net-zero-energy metro railway and station systems," Applied Energy, Elsevier, vol. 333(C).
    9. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    10. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    11. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    12. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    13. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    14. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    15. Giovani Almeida Dávi & José López de Asiain & Juan Solano & Estefanía Caamaño-Martín & César Bedoya, 2017. "Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management," Energies, MDPI, vol. 10(8), pages 1-24, August.
    16. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    17. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    18. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    19. Bjelland, David & Brozovsky, Johannes & Hrynyszyn, Bozena Dorota, 2024. "Systematic review: Upscaling energy retrofitting to the multi-building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    20. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5046-:d:616025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.