IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003657.html
   My bibliography  Save this article

Distributed fixed-time cooperative control for flywheel energy storage systems with state-of-energy constraints

Author

Listed:
  • Xiao, Feng
  • Yang, Zhengguang
  • Wei, Bo

Abstract

This paper studies the cooperative control problem of flywheel energy storage matrix systems (FESMS). The aim of the cooperative control is to achieve two objectives: the output power of the flywheel energy storage systems (FESSs) should meet the reference power requirement, and the state of FESSs must meet the relative state-of-energy (SOE) variation rate constraints. When the above objectives are reached, the FESSs are able to track reference power command while ensuring that all flywheels are fully charged or discharged at the same time. To achieve these two objectives, a distributed power allocation strategy is proposed. A distributed estimator is designed to estimate the global state information required for each FESS in the allocation strategy. In addition, a fixed-time estimator based on a dynamic average consensus algorithm is designed, which is capable of quickly estimating the global average information. The convergence of the fixed-time estimator under the boundedness assumption of the time derivative of input signal is analyzed by the Lyapunov stability theory. The simulation results show that the FESSs interact with neighbors through local information such that the evolution of the SOE among the FESSs satisfies the constraints and the total power tracks the total reference power. Furthermore, compared with the existing methods, the proposed dynamic average consensus estimators achieve an accurate tracking of the global state information in a fixed time, regardless of the initial conditions.

Suggested Citation

  • Xiao, Feng & Yang, Zhengguang & Wei, Bo, 2024. "Distributed fixed-time cooperative control for flywheel energy storage systems with state-of-energy constraints," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003657
    DOI: 10.1016/j.energy.2024.130593
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    2. McIlwaine, Neil & Foley, Aoife M. & Morrow, D. John & Al Kez, Dlzar & Zhang, Chongyu & Lu, Xi & Best, Robert J., 2021. "A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems," Energy, Elsevier, vol. 229(C).
    3. Rupp, A. & Baier, H. & Mertiny, P. & Secanell, M., 2016. "Analysis of a flywheel energy storage system for light rail transit," Energy, Elsevier, vol. 107(C), pages 625-638.
    4. Changli Shi & Tongzhen Wei & Xisheng Tang & Long Zhou & Tongshuo Zhang, 2019. "Charging–Discharging Control Strategy for a Flywheel Array Energy Storage System Based on the Equal Incremental Principle," Energies, MDPI, vol. 12(15), pages 1-27, July.
    5. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    6. Arani, A.A. Khodadoost & Karami, H. & Gharehpetian, G.B. & Hejazi, M.S.A., 2017. "Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 9-18.
    7. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    8. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    9. Zhao, Pan & Dai, Yiping & Wang, Jiangfeng, 2014. "Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application," Energy, Elsevier, vol. 70(C), pages 674-684.
    10. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    11. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
    12. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jia-Wei & Zhang, Hong-Li & Wang, Cong, 2024. "Distributed state-of-charge and power balance estimation for aggregated battery energy storage systems with EV aggregators," Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    2. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    3. Rastegarzadeh, Sina & Mahzoon, Mojtaba & Mohammadi, Hossein, 2020. "A novel modular designing for multi-ring flywheel rotor to optimize energy consumption in light metro trains," Energy, Elsevier, vol. 206(C).
    4. Kondoh, Junji & Funamoto, Takuji & Nakanishi, Taisuke & Arai, Ryohei, 2018. "Energy characteristics of a fixed-speed flywheel energy storage system with direct grid-connection," Energy, Elsevier, vol. 165(PB), pages 701-708.
    5. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    6. Prasasti, E.B. & Joseph, M. & Miao, X. & Zangeneh, M. & Terheiden, K., 2024. "Design of shaft- and rim-driven contra-rotating reversible pump-turbine to optimize novel low-head pumped hydro energy storages," Energy, Elsevier, vol. 306(C).
    7. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    8. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    9. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    10. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. He, Xin & Wang, Huanran & Li, Ruixiong & Sun, Hao & Chen, Hao & Li, ChengChen & Ge, Gangqiang & Tao, Feiyue, 2022. "Thermo-conversion of a physical energy storage system with high-energy density: Combination of thermal energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 239(PE).
    12. Arani, A.A. Khodadoost & Karami, H. & Gharehpetian, G.B. & Hejazi, M.S.A., 2017. "Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 9-18.
    13. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    14. Elhoussin Elbouchikhi & Yassine Amirat & Gilles Feld & Mohamed Benbouzid & Zhibin Zhou, 2020. "A Lab-scale Flywheel Energy Storage System: Control Strategy and Domestic Applications," Energies, MDPI, vol. 13(3), pages 1-23, February.
    15. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Wu, Di & Wang, Dexin & Ramachandran, Thiagarajan & Holladay, Jamie, 2022. "A techno-economic assessment framework for hydrogen energy storage toward multiple energy delivery pathways and grid services," Energy, Elsevier, vol. 249(C).
    17. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    18. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    19. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    20. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.