IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp762-774.html
   My bibliography  Save this article

Assessment regarding energy saving and decoupling for different AHU (air handling unit) and control strategies in the hot-humid climatic region of Iraq

Author

Listed:
  • Homod, Raad Z.

Abstract

In a hot and humid climate, HVAC (heating, ventilating and air conditioning) systems go through rigorous coupling procedures as a result of indoor conditions, which are significantly affected by the outdoor environment. Hence, a traditional method for addressing a coupling setback in HVAC systems is to add a reheating coil. However, this technique consumes a significant amount of energy. Three different strategies are designed in a hot and humid climate region, such as Basra, for AHUs (air handling unit), and their evaluations of decoupling are compared. The first and second strategies use the same feedback control references (temperature and relative humidity), except the second one also uses a reheating coil and a wet main cooling coil. The AHU (air handling unit) of the third (proposed) strategy is equipped with a dry main cooling coil and a wet pre-cooling coil to dehumidify fresh air, which allows the controller to handle the coupling problem. Furthermore, the proposed strategy utilises the PMV (predicted mean vote) index as a feedback control reference to increase optimisation parameters that provide more flexibility in meeting the thermal comfort sensation. The adaptive control algorithm of nonlinear multivariable systems is adopted to coordinate these three policies of optimisation. The results of the three strategies show that the proposed scheme achieved the desired thermal comfort, superior performance, adaptation, robustness and implementation without using a reheating coil.

Suggested Citation

  • Homod, Raad Z., 2014. "Assessment regarding energy saving and decoupling for different AHU (air handling unit) and control strategies in the hot-humid climatic region of Iraq," Energy, Elsevier, vol. 74(C), pages 762-774.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:762-774
    DOI: 10.1016/j.energy.2014.07.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400869X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    2. Kusiak, Andrew & Li, Mingyang, 2010. "Reheat optimization of the variable-air-volume box," Energy, Elsevier, vol. 35(5), pages 1997-2005.
    3. Prek, Matjaz, 2006. "Thermodynamical analysis of human thermal comfort," Energy, Elsevier, vol. 31(5), pages 732-743.
    4. Chiu, Chien-Chin & Tsai, Nan-Chyuan & Lin, Chun-Chi, 2014. "Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)," Energy, Elsevier, vol. 66(C), pages 342-353.
    5. Zhao, Lei & Michelsen, Finn Are & Foss, Bjarne, 2013. "Control design and dynamic simulation of an HMR pre-combustion power cycle based on economic measures," Energy, Elsevier, vol. 51(C), pages 171-183.
    6. Kristl, Živa & Košir, Mitja & Trobec Lah, Mateja & Krainer, Aleš, 2008. "Fuzzy control system for thermal and visual comfort in building," Renewable Energy, Elsevier, vol. 33(4), pages 694-702.
    7. Tashtoush, Bourhan & Molhim, M. & Al-Rousan, M., 2005. "Dynamic model of an HVAC system for control analysis," Energy, Elsevier, vol. 30(10), pages 1729-1745.
    8. Anastaselos, Dimitrios & Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2011. "Integrated evaluation of radiative heating systems for residential buildings," Energy, Elsevier, vol. 36(7), pages 4207-4215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Homod, Raad Z. & Mohammed, Hayder Ibrahim & Abderrahmane, Aissa & Alawi, Omer A. & Khalaf, Osamah Ibrahim & Mahdi, Jasim M. & Guedri, Kamel & Dhaidan, Nabeel S. & Albahri, A.S. & Sadeq, Abdellatif M. , 2023. "Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent," Applied Energy, Elsevier, vol. 351(C).
    2. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    3. Genovese, P.V. & Zoure, A.N., 2023. "Architecture trends and challenges in sub-Saharan Africa's construction industry: A theoretical guideline of a bioclimatic architecture evolution based on the multi-scale approach and circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Badis Bakri & Hani Benguesmia & Ahmed Ketata & Slah Driss & Haythem Nasraoui & Zied Driss, 2024. "Enhancing Sustainable Development: Assessing a Solar Air Heater (SAH) Test Bench through Computational and Experimental Methods," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
    5. Khan, Muhammad Waqas & Choudhry, Mohammad Ahmad & Zeeshan, Muhammad & Ali, Ahsan, 2015. "Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit," Energy, Elsevier, vol. 81(C), pages 477-488.
    6. Homod, Raad Z. & Munahi, Basil Sh. & Mohammed, Hayder Ibrahim & Albadr, Musatafa Abbas Abbood & Abderrahmane, AISSA & Mahdi, Jasim M. & Ben Hamida, Mohamed Bechir & Alhasnawi, Bilal Naji & Albahri, A., 2024. "Deep clustering of reinforcement learning based on the bang-bang principle to optimize the energy in multi-boiler for intelligent buildings," Applied Energy, Elsevier, vol. 356(C).
    7. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2019. "Adaptive full-range decoupled ventilation strategy and air-conditioning systems for cleanrooms and buildings requiring strict humidity control and their performance evaluation," Energy, Elsevier, vol. 168(C), pages 883-896.
    8. Homod, Raad Z. & Togun, Hussein & Ateeq, Adnan A. & Al-Mousawi, Fadhel Noraldeen & Yaseen, Zaher Mundher & Al-Kouz, Wael & Hussein, Ahmed Kadhim & Alawi, Omer A. & Goodarzi, Marjan & Ahmadi, Goodarz, 2022. "An innovative clustering technique to generate hybrid modeling of cooling coils for energy analysis: A case study for control performance in HVAC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    10. Awais Shah & Deqing Huang & Yixing Chen & Xin Kang & Na Qin, 2017. "Robust Sliding Mode Control of Air Handling Unit for Energy Efficiency Enhancement," Energies, MDPI, vol. 10(11), pages 1-21, November.
    11. Alexandre Correia & Luís Miguel Ferreira & Paulo Coimbra & Pedro Moura & Aníbal T. de Almeida, 2022. "Smart Thermostats for a Campus Microgrid: Demand Control and Improving Air Quality," Energies, MDPI, vol. 15(4), pages 1-21, February.
    12. Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    2. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    3. Kusiak, Andrew & Li, Mingyang, 2010. "Reheat optimization of the variable-air-volume box," Energy, Elsevier, vol. 35(5), pages 1997-2005.
    4. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    5. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    6. Sha, Huajing & Xu, Peng & Yang, Zhiwei & Chen, Yongbao & Tang, Jixu, 2019. "Overview of computational intelligence for building energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 76-90.
    7. Khan, Muhammad Waqas & Choudhry, Mohammad Ahmad & Zeeshan, Muhammad & Ali, Ahsan, 2015. "Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit," Energy, Elsevier, vol. 81(C), pages 477-488.
    8. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    9. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
    10. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2018. "Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps," Energies, MDPI, vol. 11(3), pages 1-41, February.
    11. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    12. Chiu, Chien-Chin & Tsai, Nan-Chyuan & Lin, Chun-Chi, 2014. "Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)," Energy, Elsevier, vol. 66(C), pages 342-353.
    13. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    14. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    15. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    16. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    17. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2017. "A Design of a Hybrid Non-Linear Control Algorithm," Energies, MDPI, vol. 10(11), pages 1-32, November.
    18. Ucar, Aynur, 2010. "Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey," Energy, Elsevier, vol. 35(4), pages 1854-1864.
    19. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2016. "Exergy model of the human heart," Energy, Elsevier, vol. 117(P2), pages 612-619.
    20. Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:762-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.