IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019782.html
   My bibliography  Save this article

Theoretical model of a α-type four-cylinder double-acting stirling engine based on energy method

Author

Listed:
  • Cheng, Chin-Hsiang
  • Yang, Hang-Suin
  • Tan, Yi-Han

Abstract

The double-acting Stirling engine is a type of Stirling engine which comprises four engine units with only four pistons. In this paper, an energy method is proposed for solving the relationship between the crank angle of the main shaft and the work generated by the working fluid. The proposed method is capable of finding the relationship more efficiently without solving the equations of motion of all the links of the linking mechanism. The wobble yoke mechanism is chosen as the transmission mechanism of the proposed engine. A modified non-ideal adiabatic model was employed for predicting the transient variation in the thermal properties of working fluid. The transient behavior of the kinetic energy and potential energy of the linking mechanism, the work loss due to friction, shaft work, and indicated work were discussed. The simulation results show that the maximum shaft power of the proposed engine is 1103 W at 878 rpm under the loading torque of 12 N m at the heating temperature of 1200 K. In addition, the regenerator's porosity of 0.666 gives the maximum shaft power 683 W for the proposed engine. The proposed model has successfully predicted the performance of the four-cylinder double-acting Stirling engine.

Suggested Citation

  • Cheng, Chin-Hsiang & Yang, Hang-Suin & Tan, Yi-Han, 2022. "Theoretical model of a α-type four-cylinder double-acting stirling engine based on energy method," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019782
    DOI: 10.1016/j.energy.2021.121730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Zhanghua & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2014. "Development of a 3kW double-acting thermoacoustic Stirling electric generator," Applied Energy, Elsevier, vol. 136(C), pages 866-872.
    2. Campos, M.C. & Vargas, J.V.C. & Ordonez, J.C., 2012. "Thermodynamic optimization of a Stirling engine," Energy, Elsevier, vol. 44(1), pages 902-910.
    3. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    4. Yang, Hang-Suin & Cheng, Chin-Hsiang & Huang, Shang-Ting, 2018. "A complete model for dynamic simulation of a 1-kW class beta-type Stirling engine with rhombic-drive mechanism," Energy, Elsevier, vol. 161(C), pages 892-906.
    5. Cullen, Barry & McGovern, Jim, 2010. "Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine," Energy, Elsevier, vol. 35(2), pages 1017-1023.
    6. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    7. Chin-Hsiang Cheng & Yi-Han Tan, 2020. "Numerical Optimization of a Four-Cylinder Double-Acting Stirling Engine Based on Non-Ideal Adiabatic Thermodynamic Model and SCGM Method," Energies, MDPI, vol. 13(8), pages 1-19, April.
    8. Kongtragool, Bancha & Wongwises, Somchai, 2003. "A review of solar-powered Stirling engines and low temperature differential Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 131-154, April.
    9. Abdullah, Shahrir & Yousif, Belal F. & Sopian, Kamaruzzaman, 2005. "Design consideration of low temperature differential double-acting Stirling engine for solar application," Renewable Energy, Elsevier, vol. 30(12), pages 1923-1941.
    10. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    11. Altin, Murat & Okur, Melih & Ipci, Duygu & Halis, Serdar & Karabulut, Halit, 2018. "Thermodynamic and dynamic analysis of an alpha type Stirling engine with Scotch Yoke mechanism," Energy, Elsevier, vol. 148(C), pages 855-865.
    12. Féniès, Gwyddyon & Formosa, Fabien & Ramousse, Julien & Badel, Adrien, 2015. "Double acting Stirling engine: Modeling, experiments and optimization," Applied Energy, Elsevier, vol. 159(C), pages 350-361.
    13. García-Canseco, Eloísa & Alvarez-Aguirre, Alejandro & Scherpen, Jacquelien M.A., 2015. "Modeling for control of a kinematic wobble-yoke Stirling engine," Renewable Energy, Elsevier, vol. 75(C), pages 808-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin-Hsiang Cheng & Yi-Han Tan & Tzu-Sung Liu, 2021. "Experimental and Dynamic Analysis of a Small-Scale Double-Acting Four-Cylinder α-Type Stirling Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    2. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    3. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    4. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    5. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    6. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    7. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    8. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2014. "Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium," Energy, Elsevier, vol. 78(C), pages 701-712.
    9. Chin-Hsiang Cheng & Jhen-Syuan Huang, 2020. "Development of a Beta-Type Moderate-Temperature-Differential Stirling Engine Based on Computational and Experimental Methods," Energies, MDPI, vol. 13(22), pages 1-14, November.
    10. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.
    11. Masoumi, A.P. & Tavakolpour-Saleh, A.R., 2020. "Experimental assessment of damping and heat transfer coefficients in an active free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 195(C).
    12. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    13. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    14. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    15. Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
    16. Chang, Depeng & Hu, Jianying & Sun, Yanlei & Zhang, Limin & Chen, Yanyan & Luo, Ercang, 2023. "Numerical investigation on key parameters of a double-acting free piston Stirling generator," Energy, Elsevier, vol. 278(PB).
    17. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    18. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
    19. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    20. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.