IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v123y2017icp655-663.html
   My bibliography  Save this article

Startup mechanism and power distribution of free piston Stirling engine

Author

Listed:
  • Mou, Jian
  • Hong, Guotong

Abstract

The startup mechanism and power distribution of free piston Stirling engine (FPSE) are different from the traditional crank connecting Stirling engine. All the time, there is no paper to study the startup mechanism and power distribution of FPSE. In this paper, three necessary conditions of startup of FPSE have been first proposed. Theoretical analysis and numerical simulation have been used to illustrate the α, β and γ types FPSEs whether meet the startup conditions. Related experiments have been done to prove the theoretical analysis and numerical simulation on an α and a β type FPSEs. According to the theoretical analysis, numerical simulation and experiments, some important results have been obtained. If a FPSE works stably, during a complete cycle, not only the total work in compression and expansion space should be positive, but also the work done by gas to both piston and displacer should be positive. To the α type FPSE, over a complete cycle the work done by gas to piston is negative and the work done by gas to displacer is positive. It does not meet the startup conditions. Therefore, the α type FPSE is impossible to startup. To the β and γ type FPSEs, over a complete cycle the work done by gas to displacer is positive. However, over a complete cycle the work done by gas to piston could be positive or negative. So it maybe meet the startup conditions of FPSE or not. So the β and γ type FPSEs could start up or not. Whether the β and γ type FPSEs could start up depends on the engine design and parameters configuration.

Suggested Citation

  • Mou, Jian & Hong, Guotong, 2017. "Startup mechanism and power distribution of free piston Stirling engine," Energy, Elsevier, vol. 123(C), pages 655-663.
  • Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:655-663
    DOI: 10.1016/j.energy.2017.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217302049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mabrouk, M.T. & Kheiri, A. & Feidt, M., 2015. "Effect of leakage losses on the performance of a β type Stirling engine," Energy, Elsevier, vol. 88(C), pages 111-117.
    2. Karabulut, Halit, 2011. "Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles," Renewable Energy, Elsevier, vol. 36(6), pages 1704-1709.
    3. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    4. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
    5. Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
    6. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.
    7. Formosa, Fabien & Fréchette, Luc G., 2013. "Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization," Energy, Elsevier, vol. 57(C), pages 796-808.
    8. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas & Feidt, Michel, 2015. "Connectionist intelligent model estimates output power and torque of stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 871-883.
    9. Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye, Wenlian & Zhang, Ting & Wang, Xiaojun & Liu, Yingwen & Chen, Pengfan, 2020. "Parametric study of gamma-type free piston stirling engine using nonlinear thermodynamic-dynamic coupled model," Energy, Elsevier, vol. 211(C).
    2. Jacek Kropiwnicki & Mariusz Furmanek, 2020. "A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines," Energies, MDPI, vol. 13(7), pages 1-21, April.
    3. Ayodeji Sowale & Edward J. Anthony & Athanasios John Kolios, 2018. "Optimisation of a Quasi-Steady Model of a Free-Piston Stirling Engine," Energies, MDPI, vol. 12(1), pages 1-17, December.
    4. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    5. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    6. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
    7. Sun, Haojie & Yu, Guoyao & Zhao, Dan & Dai, Wei & Luo, Ercang, 2023. "Thermoacoustic hysteresis of a free-piston Stirling electric generator," Energy, Elsevier, vol. 280(C).
    8. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    9. Chen, Pengfan & Yang, Peng & Liu, Liu & Liu, Yingwen, 2021. "Parametric investigation of the phase characteristics of a beta-type free piston Stirling engine based on a thermodynamic-dynamic coupled model," Energy, Elsevier, vol. 219(C).
    10. Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    2. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    3. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    4. Tavakolpour-Saleh, A.R. & Zare, SH. & Bahreman, H., 2017. "A novel active free piston Stirling engine: Modeling, development, and experiment," Applied Energy, Elsevier, vol. 199(C), pages 400-415.
    5. Chen, Pengfan & Yang, Peng & Liu, Liu & Liu, Yingwen, 2021. "Parametric investigation of the phase characteristics of a beta-type free piston Stirling engine based on a thermodynamic-dynamic coupled model," Energy, Elsevier, vol. 219(C).
    6. Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).
    7. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.
    8. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
    9. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    10. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    11. Tavakolpour-Saleh, A.R., 2021. "A novel theorem on motion stability," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    12. Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.
    13. Remiorz, Leszek & Kotowicz, Janusz & Uchman, Wojciech, 2018. "Comparative assessment of the effectiveness of a free-piston Stirling engine-based micro-cogeneration unit and a heat pump," Energy, Elsevier, vol. 148(C), pages 134-147.
    14. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    15. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2014. "Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis," Energy, Elsevier, vol. 64(C), pages 970-978.
    16. Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
    17. Ayodeji Sowale & Edward J. Anthony & Athanasios John Kolios, 2018. "Optimisation of a Quasi-Steady Model of a Free-Piston Stirling Engine," Energies, MDPI, vol. 12(1), pages 1-17, December.
    18. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2019. "An averaging-based Lyapunov technique to design thermal oscillators: A case study on free piston Stirling engine," Energy, Elsevier, vol. 189(C).
    19. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    20. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:123:y:2017:i:c:p:655-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.