IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124013673.html
   My bibliography  Save this article

Quantifying damping coefficients in a rhombic-drive β-type Stirling engine based on a novel CFD-mechanism dynamic model and experimental data

Author

Listed:
  • Phung, Duc-Thuan
  • Cheng, Chin-Hsiang

Abstract

Effectively exploiting renewable thermal energy sources and reducing the operating costs of renewable thermal systems remain challenging. Stirling engines, which serve as the heart of some renewable thermal systems, significantly impact both the maintenance and overall efficiency of these systems. However, the lack of information on friction behaviors in Stirling engines hinders the achievement of these goals. Therefore, this study clarifies the behaviors of damping coefficients in a rhombic-drive β-type Stirling engine. A novel CFD-mechanism dynamic model is developed to compute numerical values of cyclic-averaged engine speed corresponding to various loading torques. By employing the steepest descent method, the unknown values of the damping coefficients are adjusted to ensure the best match between numerical and experimental variations of loading torque with cyclic-averaged engine speed. Consequently, the study sheds light on the variation of damping coefficients with the instantaneous engine speed. The damping coefficient between the cylinder and piston is consistently lower than that between the displacer and cylinder. Additionally, the damping coefficient between the cylinder and piston ranges from 15.8 to 63.4 N s/m, while the coefficient between the cylinder and displacer increases from 50.0 to 195.5 N s/m as the instantaneous engine speed decreases from 1650 to 450 rpm.

Suggested Citation

  • Phung, Duc-Thuan & Cheng, Chin-Hsiang, 2024. "Quantifying damping coefficients in a rhombic-drive β-type Stirling engine based on a novel CFD-mechanism dynamic model and experimental data," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013673
    DOI: 10.1016/j.renene.2024.121299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2015. "A new thermal model based on polytropic numerical simulation of Stirling engines," Applied Energy, Elsevier, vol. 141(C), pages 143-159.
    2. Chin-Hsiang Cheng & Yi-Han Tan & Tzu-Sung Liu, 2021. "Experimental and Dynamic Analysis of a Small-Scale Double-Acting Four-Cylinder ?-Type Stirling Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    3. Altin, Murat & Okur, Melih & Ipci, Duygu & Halis, Serdar & Karabulut, Halit, 2018. "Thermodynamic and dynamic analysis of an alpha type Stirling engine with Scotch Yoke mechanism," Energy, Elsevier, vol. 148(C), pages 855-865.
    4. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    5. Karabulut, Halit, 2011. "Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles," Renewable Energy, Elsevier, vol. 36(6), pages 1704-1709.
    6. Cheng, Chin-Hsiang & Yang, Hang-Suin & Jhou, Bing-Yi & Chen, Yi-Cheng & Wang, Yu-Jen, 2013. "Dynamic simulation of thermal-lag Stirling engines," Applied Energy, Elsevier, vol. 108(C), pages 466-476.
    7. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    8. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
    9. Hooshang, M. & Askari Moghadam, R. & AlizadehNia, S., 2016. "Dynamic response simulation and experiment for gamma-type Stirling engine," Renewable Energy, Elsevier, vol. 86(C), pages 192-205.
    10. Bataineh, Khaled, 2018. "Mathematical formulation of alpha -type Stirling engine with Ross Yoke mechanism," Energy, Elsevier, vol. 164(C), pages 1178-1199.
    11. Yang, Hang-Suin & Cheng, Chin-Hsiang & Huang, Shang-Ting, 2018. "A complete model for dynamic simulation of a 1-kW class beta-type Stirling engine with rhombic-drive mechanism," Energy, Elsevier, vol. 161(C), pages 892-906.
    12. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    13. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    14. Cheng, Chin-Hsiang & Yang, Hang-Suin & Tan, Yi-Han, 2022. "Theoretical model of a α-type four-cylinder double-acting stirling engine based on energy method," Energy, Elsevier, vol. 238(PA).
    15. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
    16. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2012. "Optimization of geometrical parameters for Stirling engines based on theoretical analysis," Applied Energy, Elsevier, vol. 92(C), pages 395-405.
    17. Yang, Hang-Suin & Cheng, Chin-Hsiang, 2017. "Development of a beta-type Stirling engine with rhombic-drive mechanism using a modified non-ideal adiabatic model," Applied Energy, Elsevier, vol. 200(C), pages 62-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    2. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    3. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    4. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    5. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
    6. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "A transient one-dimensional numerical model for kinetic Stirling engine," Applied Energy, Elsevier, vol. 183(C), pages 775-790.
    7. Hooshang, M. & Askari Moghadam, R. & AlizadehNia, S., 2016. "Dynamic response simulation and experiment for gamma-type Stirling engine," Renewable Energy, Elsevier, vol. 86(C), pages 192-205.
    8. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    9. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    10. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    11. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    12. Bataineh, Khaled, 2018. "Mathematical formulation of alpha -type Stirling engine with Ross Yoke mechanism," Energy, Elsevier, vol. 164(C), pages 1178-1199.
    13. Yang, Hang-Suin & Zhu, Hao-Qiang & Xiao, Xian-Zhong, 2023. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Elsevier, vol. 275(C).
    14. Chin-Hsiang Cheng & Duc-Thuan Phung, 2021. "Numerical Optimization of the β-Type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method," Energies, MDPI, vol. 14(23), pages 1-14, November.
    15. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.
    16. Tavakolpour-Saleh, A.R. & Zare, SH. & Bahreman, H., 2017. "A novel active free piston Stirling engine: Modeling, development, and experiment," Applied Energy, Elsevier, vol. 199(C), pages 400-415.
    17. Cheng, Chin-Hsiang & Yang, Hang-Suin & Tan, Yi-Han, 2022. "Theoretical model of a α-type four-cylinder double-acting stirling engine based on energy method," Energy, Elsevier, vol. 238(PA).
    18. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    19. Chi, Chunyun & Li, Ruijie & Mou, Jian & Lin, Mingqiang & Jiao, Kexin & Yang, Mingzhuo & Liu, He & Hong, Guotong, 2024. "Theoretical and experimental study of free piston Stirling generator for high cold end temperatures," Energy, Elsevier, vol. 289(C).
    20. Erol, Derviş, 2024. "An experimental comparative study of the effects on the engine performance of using three different motion mechanisms in a beta-configuration Stirling engine," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.