IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2085-d220848.html
   My bibliography  Save this article

Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants

Author

Listed:
  • Fontina Petrakopoulou

    (Department of Thermal and Fluid Engineering, University Carlos III of Madrid, Avenida de la Universidad 30, Leganés, 28911 Madrid, Spain)

  • Marina Olmeda-Delgado

    (Department of Thermal and Fluid Engineering, University Carlos III of Madrid, Avenida de la Universidad 30, Leganés, 28911 Madrid, Spain)

Abstract

With vast amounts of water consumed for electricity generation and water scarcity predicted to rise in the near future, the necessity to evaluate water consumption in power plants arises. Cooling systems are the main source of water consumption in thermoelectric power plants, since water is a cooling fluid with relatively low cost and high efficiency. This study evaluates the performance of two types of power plants: a natural gas combined-cycle and an integrated solar combined-cycle. Special focus is made on the cooling system used in the plants and its characteristics, such as water consumption, related costs, and fuel requirements. Wet, dry, and hybrid cooling systems are studied for each of the power plants. While water is used as the cooling fluid to condense the steam in wet cooling, dry cooling uses air circulated by a fan. Hybrid cooling presents an alternative that combines both methods. We find that hybrid cooling has the highest investment costs as it bears the sum of the costs of both wet and dry cooling systems. However, this system produces considerable fuel savings when compared to dry cooling, and a 50% reduction in water consumption when compared to wet cooling. As expected, the wet cooling system has the highest exergetic efficiency, of 1 and 5 percentage points above that of dry cooling in the conventional combined-cycle and integrated solar combined-cycle, respectively, thus representing the lowest investment cost and highest water consumption among the three alternatives. Hybrid and dry cooling systems may be considered viable alternatives under increasing water costs, requiring better enforcement of the measures for sustainable water consumption in the energy sector.

Suggested Citation

  • Fontina Petrakopoulou & Marina Olmeda-Delgado, 2019. "Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2085-:d:220848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bieber, Niclas & Ker, Jen Ho & Wang, Xiaonan & Triantafyllidis, Charalampos & van Dam, Koen H. & Koppelaar, Rembrandt H.E.M. & Shah, Nilay, 2018. "Sustainable planning of the energy-water-food nexus using decision making tools," Energy Policy, Elsevier, vol. 113(C), pages 584-607.
    2. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    3. Binamer, Anwar O., 2019. "Al-Abdaliya integrated solar combined cycle power plant: Case study of Kuwait, part I," Renewable Energy, Elsevier, vol. 131(C), pages 923-937.
    4. Ligang Wang & Yongping Yang & Changqing Dong & Zhiping Yang & Gang Xu & Lingnan Wu, 2012. "Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant," Energies, MDPI, vol. 5(9), pages 1-17, September.
    5. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    6. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    7. Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
    8. Alqahtani, Bandar Jubran & Patiño-Echeverri, Dalia, 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar," Applied Energy, Elsevier, vol. 169(C), pages 927-936.
    9. Bonforte, Giuseppe & Buchgeister, Jens & Manfrida, Giampaolo & Petela, Karolina, 2018. "Exergoeconomic and exergoenvironmental analysis of an integrated solar gas turbine/combined cycle power plant," Energy, Elsevier, vol. 156(C), pages 352-359.
    10. Lu Lin & Yongqin David Chen, 2017. "Evaluation of Future Water Use for Electricity Generation under Different Energy Development Scenarios in China," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
    11. Saeed Hadian & Kaveh Madani, 2013. "The Water Demand of Energy: Implications for Sustainable Energy Policy Development," Sustainability, MDPI, vol. 5(11), pages 1-14, November.
    12. Thopil, George Alex & Pouris, Anastassios, 2016. "A 20 year forecast of water usage in electricity generation for South Africa amidst water scarce conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1106-1121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faisal Asfand & Patricia Palenzuela & Lidia Roca & Adèle Caron & Charles-André Lemarié & Jon Gillard & Peter Turner & Kumar Patchigolla, 2020. "Thermodynamic Performance and Water Consumption of Hybrid Cooling System Configurations for Concentrated Solar Power Plants," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    2. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    3. Jamil, Ahmad & Javed, Adeel & Wajid, Abdul & Zeb, Muhammad Omar & Ali, Majid & Khoja, Asif Hussain & Imran, Muhammad, 2021. "Multiparametric optimization for reduced condenser cooling water consumption in a degraded combined cycle gas turbine power plant from a water-energy nexus perspective," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    2. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    3. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    4. Sultan, Ali J. & Hughes, Kevin J. & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed, 2020. "Techno-economic competitiveness of 50 MW concentrating solar power plants for electricity generation under Kuwait climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Chul-Seung Hong & Eul-Bum Lee, 2018. "Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions," Energies, MDPI, vol. 11(9), pages 1-21, August.
    6. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    7. Lee, Jae Chul & Lee, Hyeon Hui & Joo, Yong Jin & Lee, Chang Ha & Oh, Min, 2014. "Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier," Energy, Elsevier, vol. 64(C), pages 58-68.
    8. Herraiz, Laura & Hogg, Dougal & Cooper, Jim & Lucquiaud, Mathieu, 2019. "Reducing the water usage of post-combustion capture systems: The role of water condensation/evaporation in rotary regenerative gas/gas heat exchangers," Applied Energy, Elsevier, vol. 239(C), pages 434-453.
    9. Shucheng Wang & Zhongguang Fu & Gaoqiang Zhang & Tianqing Zhang, 2018. "Advanced Thermodynamic Analysis Applied to an Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(6), pages 1-16, June.
    10. Ersayin, Erdem & Ozgener, Leyla, 2015. "Performance analysis of combined cycle power plants: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 832-842.
    11. Moharramian, Anahita & Soltani, Saeed & Rosen, Marc A. & Mahmoudi, S.M.S. & Bhattacharya, Tanushree, 2019. "Modified exergy and modified exergoeconomic analyses of a solar based biomass co-fired cycle with hydrogen production," Energy, Elsevier, vol. 167(C), pages 715-729.
    12. Lauri Ahopelto & Noora Veijalainen & Joseph H. A. Guillaume & Marko Keskinen & Mika Marttunen & Olli Varis, 2019. "Can There be Water Scarcity with Abundance of Water? Analyzing Water Stress during a Severe Drought in Finland," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    13. Peer, Rebecca A.M. & Sanders, Kelly T., 2018. "The water consequences of a transitioning US power sector," Applied Energy, Elsevier, vol. 210(C), pages 613-622.
    14. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    15. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    16. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    17. Uche T. Okpara & Lindsay C. Stringer & Andrew J. Dougill & Mohammed D. Bila, 2015. "Conflicts about water in Lake Chad: Are environmental, vulnerability and security issues linked?," Progress in Development Studies, , vol. 15(4), pages 308-325, October.
    18. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    20. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2085-:d:220848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.