IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp775-788.html
   My bibliography  Save this article

Loss analysis of a mix-flow turbine with nozzled twin-entry volute at different admissions

Author

Listed:
  • Xue, Yingxian
  • Yang, Mingyang
  • Martinez-Botas, Ricardo F.
  • Romagnoli, Alessandro
  • Deng, Kangyao

Abstract

This paper investigates performance and loss mechanism of a nozzled twin-entry mix-flow turbine at different admissions. Two sets of partial admissions and unequal admissions are analysed via experimentally validated numerical method. Results show that discrepancies of turbine efficiency between symmetrical unequal admissions (swopping inlet pressure on two entries) increase when unequal admissions approach to partial admissions, although their swallowing capacity is similar. Loss breakdown of turbine shows that loss is higher in nozzle but lower in rotor when the majority of flow is fed from upper part of the component (near shroud). Opposite phenomenon happens when the majority is fed from lower part (near hub). The reason for loss characteristic of nozzle is front-sweep configuration of the nozzle vane which results in evident flow separation when the flow is fed near the shroud. The reason for loss characteristic of rotor is the tornado-shaped vortex when the flow is fed from the hub. The tornado vortex is initiated by large incidence angle near hub and developed by the combination of Coriolis force, pressure gradient and centrifugal force. The study unveils loss mechanism among different admissions for a twin-entry turbine, which may enlighten the design methodology of the turbine with twin-entry volute.

Suggested Citation

  • Xue, Yingxian & Yang, Mingyang & Martinez-Botas, Ricardo F. & Romagnoli, Alessandro & Deng, Kangyao, 2019. "Loss analysis of a mix-flow turbine with nozzled twin-entry volute at different admissions," Energy, Elsevier, vol. 166(C), pages 775-788.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:775-788
    DOI: 10.1016/j.energy.2018.10.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218320656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajoo, Srithar & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2012. "Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine," Energy, Elsevier, vol. 38(1), pages 176-189.
    2. Serrano, José Ramón & Navarro, Roberto & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2018. "Turbocharger turbine rotor tip leakage loss and mass flow model valid up to extreme off-design conditions with high blade to jet speed ratio," Energy, Elsevier, vol. 147(C), pages 1299-1310.
    3. Chiong, M.S. & Rajoo, S. & Romagnoli, A. & Costall, A.W. & Martinez-Botas, R.F., 2016. "One-dimensional pulse-flow modeling of a twin-scroll turbine," Energy, Elsevier, vol. 115(P1), pages 1291-1304.
    4. Zhu, Dengting & Zheng, Xinqian, 2017. "Asymmetric twin-scroll turbocharging in diesel engines for energy and emission improvement," Energy, Elsevier, vol. 141(C), pages 702-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Jiangshan & Xue, Yingxian & Yang, Mingyang & Deng, Kangyao & Wang, Cuicui & Wu, Xintao, 2021. "A reduced-order model of twin-entry nozzleless radial turbine based on flow characteristics," Energy, Elsevier, vol. 214(C).
    2. José Galindo & Andrés Tiseira & Roberto Navarro & Lukas Benjamin Inhestern & Juan David Echavarría, 2022. "Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow," Energies, MDPI, vol. 15(24), pages 1-30, December.
    3. Hanwei Wang & Yue Chao & Tian Tang & Kai Luo & Kan Qin, 2021. "A Comparison of Partial Admission Axial and Radial Inflow Turbines for Underwater Vehicles," Energies, MDPI, vol. 14(5), pages 1-20, March.
    4. Vittorio Usai & Silvia Marelli, 2021. "Steady State Experimental Characterization of a Twin Entry Turbine under Different Admission Conditions," Energies, MDPI, vol. 14(8), pages 1-17, April.
    5. Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
    6. Ketata, Ahmed & Driss, Zied, 2021. "Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission," Energy, Elsevier, vol. 236(C).
    7. Ketata, Ahmed & Driss, Zied & Abid, Mohamed Salah, 2020. "Impact of blade number on performance, loss and flow characteristics of one mixed flow turbine," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    2. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    3. Zhu, Dengting & Zheng, Xinqian, 2018. "A new asymmetric twin-scroll turbine with two wastegates for energy improvements in diesel engines," Applied Energy, Elsevier, vol. 223(C), pages 263-272.
    4. Wei, Jiangshan & Xue, Yingxian & Deng, Kangyao & Yang, Mingyang & Liu, Ying, 2020. "A direct comparison of unsteady influence of turbine with twin-entry and single-entry scroll on performance of internal combustion engine," Energy, Elsevier, vol. 212(C).
    5. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2019. "An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions," Energy, Elsevier, vol. 180(C), pages 626-639.
    6. Ketata, Ahmed & Driss, Zied, 2021. "Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission," Energy, Elsevier, vol. 236(C).
    7. Ding, Zhanming & Zhuge, Weilin & Zhang, Yangjun & Chen, Hua & Martinez-Botas, Ricardo & Yang, Mingyang, 2017. "A one-dimensional unsteady performance model for turbocharger turbines," Energy, Elsevier, vol. 132(C), pages 341-355.
    8. Zhu, Dengting & Zheng, Xinqian, 2019. "Potential for energy and emissions of asymmetric twin-scroll turbocharged diesel engines combining inverse Brayton cycle system," Energy, Elsevier, vol. 179(C), pages 581-592.
    9. Wei, Jiangshan & Xue, Yingxian & Yang, Mingyang & Deng, Kangyao & Wang, Cuicui & Wu, Xintao, 2021. "A reduced-order model of twin-entry nozzleless radial turbine based on flow characteristics," Energy, Elsevier, vol. 214(C).
    10. José Galindo & Andrés Tiseira & Roberto Navarro & Lukas Benjamin Inhestern & Juan David Echavarría, 2022. "Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow," Energies, MDPI, vol. 15(24), pages 1-30, December.
    11. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    12. Xue, Yingxian & Yang, Mingyang & Pan, Lei & Deng, Kangyao & Wu, Xintao & Wang, Cuicui, 2021. "Gasdynamic behaviours of a radial turbine with pulsating incoming flow," Energy, Elsevier, vol. 218(C).
    13. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    14. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    15. Tüchler, Stefan & Chen, Zhihang & Copeland, Colin D., 2018. "Multipoint shape optimisation of an automotive radial compressor using a coupled computational fluid dynamics and genetic algorithm approach," Energy, Elsevier, vol. 165(PA), pages 543-561.
    16. Sheng Yin & Jimin Ni & Houchuan Fan & Xiuyong Shi & Rong Huang, 2022. "A Study of Evaluation Method for Turbocharger Turbine Based on Joint Operation Curve," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    17. Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
    18. Khalil, Khalil M. & Mahmoud, S. & Al- Dadah, R.K., 2020. "Experimental and numerical investigation of blade height effects on micro-scale axial turbines performance using compressed air open cycle," Energy, Elsevier, vol. 211(C).
    19. Mohd Muqeem & Ahmad Faizan Sherwani & Mukhtar Ahmad & Zahid Akhtar Khan, 2018. "Optimization of diesel engine input parameters for reducing hydrocarbon emission and smoke opacity using Taguchi method and analysis of variance," Energy & Environment, , vol. 29(3), pages 410-431, May.
    20. Dariusz Kozak & Paweł Mazuro, 2023. "Numerical Analysis of Two-Stage Turbine System for Multicylinder Engine under Pulse Flow Conditions with High Pressure-Ratio Turbine Rotor," Energies, MDPI, vol. 16(2), pages 1-46, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:775-788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.