IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2228-d537438.html
   My bibliography  Save this article

Steady State Experimental Characterization of a Twin Entry Turbine under Different Admission Conditions

Author

Listed:
  • Vittorio Usai

    (Department of Mechanical, Energy, Management and Transportation Engineering (DIME), University of Genoa, Via Montallegro 1, 16145 Genoa, Italy)

  • Silvia Marelli

    (Department of Mechanical, Energy, Management and Transportation Engineering (DIME), University of Genoa, Via Montallegro 1, 16145 Genoa, Italy)

Abstract

The increasingly restrictive limits on exhaust emissions of automotive internal combustion engines imposed in recent years are pushing OEMs to seek new solutions to improve powertrain efficiency. Despite the increase in electric and hybrid powertrains, the turbocharging technique is still one of the most adopted solution in automotive internal combustion engines to achieve good efficiency with high specific power levels. Nowadays, turbocharged downsized engines are the most common solution to lower CO 2 emissions. Pulse turbocharging is the most common boosting layout in automotive applications as the best response in terms of time-to-boost and exhaust energy extraction. In a high-fractionated engine with four or more cylinders, a twin entry turbine can be adopted to maximize pulse turbocharging benefits and avoid interaction in the discharge phase of the cylinders. The disadvantages of the twin entry turbine are mainly due to the complexity of the exhaust piping line and the high amount of information required to build a rigorous and reliable matching model. This paper presents a detailed experimental characterization of a twin entry turbine with particular reference to the turbine efficiency and the swallowing capacity under different admission conditions. The steady flow experimental campaign was performed at the turbocharger test bench of the University of Genoa, in order to analyze the behavior of the twin entry turbine in full, partial and unbalanced admission. These are the conditions in which the turbine must work instantaneously during its normal operation in engine application. The results show a different swallowing capacity of each sector and the interactions between the two entries.

Suggested Citation

  • Vittorio Usai & Silvia Marelli, 2021. "Steady State Experimental Characterization of a Twin Entry Turbine under Different Admission Conditions," Energies, MDPI, vol. 14(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2228-:d:537438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Jiangshan & Xue, Yingxian & Yang, Mingyang & Deng, Kangyao & Wang, Cuicui & Wu, Xintao, 2021. "A reduced-order model of twin-entry nozzleless radial turbine based on flow characteristics," Energy, Elsevier, vol. 214(C).
    2. Xue, Yingxian & Yang, Mingyang & Martinez-Botas, Ricardo F. & Romagnoli, Alessandro & Deng, Kangyao, 2019. "Loss analysis of a mix-flow turbine with nozzled twin-entry volute at different admissions," Energy, Elsevier, vol. 166(C), pages 775-788.
    3. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2019. "Experimental and Numerical Characterization of the Sliding Rotary Vane Expander Intake Pressure in Order to Develop a Novel Control-Diagnostic Procedure," Energies, MDPI, vol. 12(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Massimo Marinoni & Angelo Onorati & Giacomo Manca Di Villahermosa & Simon Langridge, 2023. "Real Driving Cycle Simulation of a Hybrid Bus by Means of a Co-Simulation Tool for the Prediction of Performance and Emissions," Energies, MDPI, vol. 16(12), pages 1-29, June.
    2. Dariusz Kozak & Paweł Mazuro, 2023. "Numerical Analysis of Two-Stage Turbine System for Multicylinder Engine under Pulse Flow Conditions with High Pressure-Ratio Turbine Rotor," Energies, MDPI, vol. 16(2), pages 1-46, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Galindo & Andrés Tiseira & Roberto Navarro & Lukas Benjamin Inhestern & Juan David Echavarría, 2022. "Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow," Energies, MDPI, vol. 15(24), pages 1-30, December.
    2. Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
    3. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    4. Ketata, Ahmed & Driss, Zied & Abid, Mohamed Salah, 2020. "Impact of blade number on performance, loss and flow characteristics of one mixed flow turbine," Energy, Elsevier, vol. 203(C).
    5. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    6. Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
    7. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2020. "On the effects of leakages in Sliding Rotary Vane Expanders," Energy, Elsevier, vol. 192(C).
    8. García-Mariaca, Alexander & Llera-Sastresa, Eva & Moreno, Francisco, 2024. "CO2 capture feasibility by Temperature Swing Adsorption in heavy-duty engines from an energy perspective," Energy, Elsevier, vol. 292(C).
    9. Xiong, Yaxuan & Zhang, Aitonglu & Peng, Xiaodong & Yao, Chenhua & Wang, Nan & Wu, Yuting & Xu, Qian & Ma, Chongfang, 2023. "Investigation of a sole gas expander for gas pressure regulation and energy recovery," Energy, Elsevier, vol. 281(C).
    10. Alexander García‐Mariaca & Eva Llera‐Sastresa, 2023. "Energy and economic analysis feasibility of CO2 capture on a natural gas internal combustion engine," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 13(2), pages 144-159, April.
    11. Ketata, Ahmed & Driss, Zied, 2021. "Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission," Energy, Elsevier, vol. 236(C).
    12. Hanwei Wang & Yue Chao & Tian Tang & Kai Luo & Kan Qin, 2021. "A Comparison of Partial Admission Axial and Radial Inflow Turbines for Underwater Vehicles," Energies, MDPI, vol. 14(5), pages 1-20, March.
    13. Wei, Jiangshan & Xue, Yingxian & Yang, Mingyang & Deng, Kangyao & Wang, Cuicui & Wu, Xintao, 2021. "A reduced-order model of twin-entry nozzleless radial turbine based on flow characteristics," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2228-:d:537438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.