Steady State Experimental Characterization of a Twin Entry Turbine under Different Admission Conditions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wei, Jiangshan & Xue, Yingxian & Yang, Mingyang & Deng, Kangyao & Wang, Cuicui & Wu, Xintao, 2021. "A reduced-order model of twin-entry nozzleless radial turbine based on flow characteristics," Energy, Elsevier, vol. 214(C).
- Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2019. "Experimental and Numerical Characterization of the Sliding Rotary Vane Expander Intake Pressure in Order to Develop a Novel Control-Diagnostic Procedure," Energies, MDPI, vol. 12(10), pages 1-17, May.
- Xue, Yingxian & Yang, Mingyang & Martinez-Botas, Ricardo F. & Romagnoli, Alessandro & Deng, Kangyao, 2019. "Loss analysis of a mix-flow turbine with nozzled twin-entry volute at different admissions," Energy, Elsevier, vol. 166(C), pages 775-788.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrea Massimo Marinoni & Angelo Onorati & Giacomo Manca Di Villahermosa & Simon Langridge, 2023. "Real Driving Cycle Simulation of a Hybrid Bus by Means of a Co-Simulation Tool for the Prediction of Performance and Emissions," Energies, MDPI, vol. 16(12), pages 1-29, June.
- Dariusz Kozak & Paweł Mazuro, 2023. "Numerical Analysis of Two-Stage Turbine System for Multicylinder Engine under Pulse Flow Conditions with High Pressure-Ratio Turbine Rotor," Energies, MDPI, vol. 16(2), pages 1-46, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- José Galindo & Andrés Tiseira & Roberto Navarro & Lukas Benjamin Inhestern & Juan David Echavarría, 2022. "Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow," Energies, MDPI, vol. 15(24), pages 1-30, December.
- Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
- Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
- Ketata, Ahmed & Driss, Zied & Abid, Mohamed Salah, 2020. "Impact of blade number on performance, loss and flow characteristics of one mixed flow turbine," Energy, Elsevier, vol. 203(C).
- Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
- Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
- Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2020. "On the effects of leakages in Sliding Rotary Vane Expanders," Energy, Elsevier, vol. 192(C).
- García-Mariaca, Alexander & Llera-Sastresa, Eva & Moreno, Francisco, 2024. "CO2 capture feasibility by Temperature Swing Adsorption in heavy-duty engines from an energy perspective," Energy, Elsevier, vol. 292(C).
- Xiong, Yaxuan & Zhang, Aitonglu & Peng, Xiaodong & Yao, Chenhua & Wang, Nan & Wu, Yuting & Xu, Qian & Ma, Chongfang, 2023. "Investigation of a sole gas expander for gas pressure regulation and energy recovery," Energy, Elsevier, vol. 281(C).
- Alexander García‐Mariaca & Eva Llera‐Sastresa, 2023. "Energy and economic analysis feasibility of CO2 capture on a natural gas internal combustion engine," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 13(2), pages 144-159, April.
- Ketata, Ahmed & Driss, Zied, 2021. "Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission," Energy, Elsevier, vol. 236(C).
- Hanwei Wang & Yue Chao & Tian Tang & Kai Luo & Kan Qin, 2021. "A Comparison of Partial Admission Axial and Radial Inflow Turbines for Underwater Vehicles," Energies, MDPI, vol. 14(5), pages 1-20, March.
- Wei, Jiangshan & Xue, Yingxian & Yang, Mingyang & Deng, Kangyao & Wang, Cuicui & Wu, Xintao, 2021. "A reduced-order model of twin-entry nozzleless radial turbine based on flow characteristics," Energy, Elsevier, vol. 214(C).
More about this item
Keywords
experimental; turbocharging; twin entry; turbine; steady flow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2228-:d:537438. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.