IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4466-d842412.html
   My bibliography  Save this article

Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry

Author

Listed:
  • Yachen Xie

    (Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA
    Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA)

  • Jiaguo Qi

    (Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA
    Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA)

  • Rui Zhang

    (Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA)

  • Xiaomiao Jiao

    (Technology Support Center, China Coal Research Institute, Beijing 100013, China)

  • Gabriela Shirkey

    (Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA
    Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA)

  • Shihua Ren

    (Technology Support Center, China Coal Research Institute, Beijing 100013, China
    School of Management, China University of Mining & Technology (Beijing), Beijing 100083, China)

Abstract

Carbon neutrality is one of the most important goals for the Chinese government to mitigate climate change. Coal has long been China’s dominant energy source and accounts for more than 70–80% of its carbon emissions. Reducing the share of coal power supply and increasing carbon capture, utilization, and storage (CCUS) in coal power plants are the two primary efforts to reduce carbon emissions in China. However, even as energy and water consumed in CCUS are offset by reduced energy consumption from green energy transitions, there may be tradeoffs from the carbon–energy–water (CEW) nexus perspective. This paper developed a metric and tool known as the “Assessment Tool for Portfolios of Coal power production under Carbon neutral goals” (ATPCC) to evaluate the tradeoffs in China’s coal power industry from both the CEW nexus and financial profits perspectives. While most CEW nexus frameworks and practical tools focus on the CEW nexus perturbation from either an external factor or one sector from CEW, ATPCC considers the coupling effect from C(Carbon) and E(Energy) in the CEW nexus when integrating two main carbon mitigation policies. ATPCC also provides an essential systematic life cycle CEW nexus assessment tool for China’s coal power industry under carbon-neutral constraints. By applying ATPCC across different Chinese coal industry development portfolios, we illustrated potential strategies to reach a zero-emission electricity industry fueled by coal. When considering the sustainability of China’s coal industry in the future, we further demonstrate that reduced water and energy consumption results from the energy transition are not enough to offset the extra water and energy consumption in the rapid adoption of CCUS efforts. However, we acknowledge that the increased energy and water consumption is not a direct correlation to CCUS application growth nor a direct negative correlation to carbon emissions. The dual effort to implement CCUS and reduce electricity generation from coal needs a thorough understanding and concise strategy. We found that economic loss resulting from coal reduction can be compensated by the carbon market. Carbon trading has the potential to be the dominant profit-making source for China’s coal power industry. Additionally, the financial profits in China’s coal power industry are not negatively correlated to carbon emissions. Balance between the carbon market and the coal industry would lead to more economic revenues. The scenario with the most rapid reduction in coal power production combined with CCUS would be more sustainable from the CEW nexus perspective. However, when economic revenues are considered, the scenario with a moderately paced energy transition and CCUS effort would be more sustainable. Nevertheless, the ATPCC allows one to customize coal production scenarios according to the desired electricity production and emission reduction, thus making it appropriate not only for use in China but also in other coal-powered regions that face high-energy demands and carbon neutrality goals.

Suggested Citation

  • Yachen Xie & Jiaguo Qi & Rui Zhang & Xiaomiao Jiao & Gabriela Shirkey & Shihua Ren, 2022. "Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry," Energies, MDPI, vol. 15(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4466-:d:842412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Xing & Zhong, Ping & Zhang, Xian & Zhu, Lei, 2018. "Business model design for the carbon capture utilization and storage (CCUS) project in China," Energy Policy, Elsevier, vol. 121(C), pages 519-533.
    2. Jinyue Yan & Ying Yang & Pietro Elia Campana & Jijiang He, 2019. "City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China," Nature Energy, Nature, vol. 4(8), pages 709-717, August.
    3. Wang, Jinman & Wang, Ruogu & Zhu, Yucheng & Li, Jiayan, 2018. "Life cycle assessment and environmental cost accounting of coal-fired power generation in China," Energy Policy, Elsevier, vol. 115(C), pages 374-384.
    4. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    5. Meng, Fanxin & Liu, Gengyuan & Chang, Yuan & Su, Meirong & Hu, Yuanchao & Yang, Zhifeng, 2019. "Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China)," Energy, Elsevier, vol. 171(C), pages 403-418.
    6. Abdulsalam Altarhouni & Danbala Danju & Ahmed Samour, 2021. "Insurance Market Development, Energy Consumption, and Turkey’s CO 2 Emissions. New Perspectives from a Bootstrap ARDL Test," Energies, MDPI, vol. 14(23), pages 1-13, November.
    7. Liu, Junling & Wang, Ke & Zou, Ji & Kong, Ying, 2019. "The implications of coal consumption in the power sector for China’s CO2 peaking target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Shu Zhang & Wenying Chen, 2022. "Assessing the energy transition in China towards carbon neutrality with a probabilistic framework," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Meha, Drilon & Pfeifer, Antun & Sahiti, Naser & Rolph Schneider, Daniel & Duić, Neven, 2021. "Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems," Applied Energy, Elsevier, vol. 304(C).
    10. Vujić, Jasmina & Antić, Dragoljub P. & Vukmirović, Zorka, 2012. "Environmental impact and cost analysis of coal versus nuclear power: The U.S. case," Energy, Elsevier, vol. 45(1), pages 31-42.
    11. Gabriela Shirkey & Megan Belongeay & Susie Wu & Xiaoguang Ma & Hassan Tavakol & Annick Anctil & Sandra Marquette-Pyatt & Rodney A. Stewart & Parikith Sinha & Richard Corkish & Jiquan Chen & Ilke Celik, 2021. "An Environmental and Societal Analysis of the US Electrical Energy Industry Based on the Water–Energy Nexus," Energies, MDPI, vol. 14(9), pages 1-20, May.
    12. DeNooyer, Tyler A. & Peschel, Joshua M. & Zhang, Zhenxing & Stillwell, Ashlynn S., 2016. "Integrating water resources and power generation: The energy–water nexus in Illinois," Applied Energy, Elsevier, vol. 162(C), pages 363-371.
    13. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    14. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Dong, Xiaobin & Wei, Hejie & Xu, Zihan & Varbanov, Petar Sabev, 2020. "Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach," Applied Energy, Elsevier, vol. 261(C).
    15. Cui, Xiaowei & Hong, Jinglan & Gao, Mingming, 2012. "Environmental impact assessment of three coal-based electricity generation scenarios in China," Energy, Elsevier, vol. 45(1), pages 952-959.
    16. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China," Applied Energy, Elsevier, vol. 308(C).
    17. Yuan Liu & Qinliang Tan & Jian Han & Mingxin Guo, 2021. "Energy-Water-Carbon Nexus Optimization for the Path of Achieving Carbon Emission Peak in China Considering Multiple Uncertainties: A Case Study in Inner Mongolia," Energies, MDPI, vol. 14(4), pages 1-21, February.
    18. Chao Zhang & Lijin Zhong & Jiao Wang, 2018. "Decoupling between water use and thermoelectric power generation growth in China," Nature Energy, Nature, vol. 3(9), pages 792-799, September.
    19. Yang, Xuechun & Wang, Yutao & Sun, Mingxing & Wang, Renqing & Zheng, Peiming, 2018. "Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 228(C), pages 2298-2307.
    20. Gao, Xuerui & Zhao, Yong & Lu, Shibao & Chen, Qianyun & An, Tingli & Han, Xinxueqi & Zhuo, La, 2019. "Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China," Applied Energy, Elsevier, vol. 250(C), pages 821-833.
    21. Scot M. Miller & Anna M. Michalak & Robert G. Detmers & Otto P. Hasekamp & Lori M. P. Bruhwiler & Stefan Schwietzke, 2019. "China’s coal mine methane regulations have not curbed growing emissions," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    22. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    23. Zhou, Nan & Zhang, Jingjing & Khanna, Nina & Fridley, David & Jiang, Shan & Liu, Xu, 2019. "Intertwined impacts of water, energy development, and carbon emissions in China," Applied Energy, Elsevier, vol. 238(C), pages 78-91.
    24. Pan, Lingying & Liu, Pei & Ma, Linwei & Li, Zheng, 2012. "A supply chain based assessment of water issues in the coal industry in China," Energy Policy, Elsevier, vol. 48(C), pages 93-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Dong, Xiaobin & Wei, Hejie & Xu, Zihan & Varbanov, Petar Sabev, 2020. "Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach," Applied Energy, Elsevier, vol. 261(C).
    2. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    3. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    4. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    5. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    6. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    7. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    8. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ren, Hongtao & Ma, Tieju, 2022. "How can structural change contribute to concurrent sustainability policy targets on GDP, emissions, energy, and employment in China?," Energy, Elsevier, vol. 256(C).
    9. Wang, P.P. & Li, Y.P. & Huang, G.H. & Wang, S.G., 2022. "A multivariate statistical input–output model for analyzing water-carbon nexus system from multiple perspectives - Jing-Jin-Ji region," Applied Energy, Elsevier, vol. 310(C).
    10. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    11. Yang, Xuechun & Wang, Yutao & Sun, Mingxing & Wang, Renqing & Zheng, Peiming, 2018. "Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 228(C), pages 2298-2307.
    12. Soprani, Stefano & Marongiu, Fabrizio & Christensen, Ludvig & Alm, Ole & Petersen, Kenni Dinesen & Ulrich, Thomas & Engelbrecht, Kurt, 2019. "Design and testing of a horizontal rock bed for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Yan, Xia & Jie, Wu & Minjun, Shi & Shouyang, Wang & Zhuoying, Zhang, 2022. "China's regional imbalance in electricity demand, power and water pricing - From the perspective of electricity-related virtual water transmission," Energy, Elsevier, vol. 257(C).
    14. Kahsar, Rudy, 2020. "The potential for brackish water use in thermoelectric power generation in the American southwest," Energy Policy, Elsevier, vol. 137(C).
    15. Yuqi Su & Yi Liang & Li Chai & Zixuan Han & Sai Ma & Jiaxuan Lyu & Zhiping Li & Liu Yang, 2019. "Water Degradation by China’s Fossil Fuels Production: A Life Cycle Assessment Based on an Input–Output Model," Sustainability, MDPI, vol. 11(15), pages 1-12, July.
    16. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    17. Yan, Kun & Gao, Hanbo & Liu, Rui & Lyu, Yizheng & Wan, Mei & Tian, Jinping & Chen, Lyujun, 2024. "Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    19. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    20. Cai, Beiming & Jiang, Ling & Liu, Yu & Wang, Feng & Zhang, Wei & Yan, Xu & Ge, Zhenzi, 2023. "Regional trends and socioeconomic drivers of energy-related water use in China from 2007 to 2017," Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4466-:d:842412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.