Energy analysis of two-phase secondary refrigeration in steady-state operation, part 1: Global optimization and leading parameter
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.07.055
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhou, H. & de Sera, I.E.E. & Infante Ferreira, C.A., 2015. "Modelling and experimental validation of a fluidized bed based CO2 hydrate cold storage system," Applied Energy, Elsevier, vol. 158(C), pages 433-445.
- Zhang, P. & Ma, Z.W. & Bai, Z.Y. & Ye, J., 2016. "Rheological and energy transport characteristics of a phase change material slurry," Energy, Elsevier, vol. 106(C), pages 63-72.
- Zhang, P. & Ma, Z.W., 2012. "An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5021-5058.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dufour, Thomas & Hoang, Hong Minh & Oignet, Jérémy & Osswald, Véronique & Fournaison, Laurence & Delahaye, Anthony, 2019. "Experimental and modelling study of energy efficiency of CO2 hydrate slurry in a coil heat exchanger," Applied Energy, Elsevier, vol. 242(C), pages 492-505.
- Yang, Kairan & Guo, Weimin & Zhang, Peng, 2024. "Cold energy transport and release characteristics of CO2+TBAB hydrate slurry flow with hydrate dissociation," Energy, Elsevier, vol. 294(C).
- Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Pons, Michel & Delahaye, Anthony & Fournaison, Laurence & Dalmazzone, Didier, 2018. "Energy analysis of two-phase secondary refrigeration in steady-state operation, part 2: Exergy analysis and effects of phase change kinetics," Energy, Elsevier, vol. 161(C), pages 1291-1299.
- Tiwari, Vipul Kumar & Kumar, Alok & Kumar, Arvind, 2019. "Enhancing ice slurry generation by using inclined cavity for subzero cold thermal energy storage: Simulation, experiment and performance analysis," Energy, Elsevier, vol. 183(C), pages 398-414.
- Yang, Kairan & Chen, Zuozhou & Zhang, Peng, 2024. "State-of-the-art of cold energy storage, release and transport using CO2 double hydrate slurry," Applied Energy, Elsevier, vol. 358(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Fei & Zhang, Peng, 2020. "A review of thermo-fluidic performance and application of shellless phase change slurry: Part 2 – Flow and heat transfer characteristics," Energy, Elsevier, vol. 192(C).
- Wang, Xiaolin & Dennis, Mike, 2016. "Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications," Applied Energy, Elsevier, vol. 167(C), pages 59-69.
- Chen, J. & Zhang, P., 2017. "Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media," Applied Energy, Elsevier, vol. 190(C), pages 868-879.
- Yang, Kairan & Chen, Zuozhou & Zhang, Peng, 2024. "State-of-the-art of cold energy storage, release and transport using CO2 double hydrate slurry," Applied Energy, Elsevier, vol. 358(C).
- Zhang, P. & Lv, F.Y., 2015. "A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications," Energy, Elsevier, vol. 82(C), pages 1068-1087.
- Shi, X.J. & Zhang, P., 2013. "A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system," Applied Energy, Elsevier, vol. 112(C), pages 1393-1402.
- Shao, Jingjing & Darkwa, Jo & Kokogiannakis, Georgios, 2016. "Development of a novel phase change material emulsion for cooling systems," Renewable Energy, Elsevier, vol. 87(P1), pages 509-516.
- Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
- Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
- Belusko, M. & Sheoran, S. & Bruno, F., 2015. "Effectiveness of direct contact PCM thermal storage with a gas as the heat transfer fluid," Applied Energy, Elsevier, vol. 137(C), pages 748-757.
- Tay, N.H.S. & Liu, M. & Belusko, M. & Bruno, F., 2017. "Review on transportable phase change material in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 264-277.
- Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
- Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Babu, Ponnivalavan & Kumar, Sreekala & Tee, Jackson & Linga, Praveen, 2023. "Semi-clathrate hydrate slurry as a cold energy storage and transport medium: Rheological study, energy analysis and enhancement by amino acid," Energy, Elsevier, vol. 264(C).
- Basu, Dipankar N. & Ganguly, A., 2016. "Solar thermal–photovoltaic powered potato cold storage – Conceptual design and performance analyses," Applied Energy, Elsevier, vol. 165(C), pages 308-317.
- Krzysztof Dutkowski & Marcin Kruzel, 2023. "The State of the Art on the Flow Characteristic of an Encapsulated Phase-Change Material Slurry," Energies, MDPI, vol. 16(19), pages 1-27, October.
- Dufour, Thomas & Hoang, Hong Minh & Oignet, Jérémy & Osswald, Véronique & Clain, Pascal & Fournaison, Laurence & Delahaye, Anthony, 2017. "Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 641-652.
- Zhang, P. & Ma, Z.W. & Bai, Z.Y. & Ye, J., 2016. "Rheological and energy transport characteristics of a phase change material slurry," Energy, Elsevier, vol. 106(C), pages 63-72.
- Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand," Applied Energy, Elsevier, vol. 174(C), pages 181-191.
- Tiwari, Vipul Kumar & Kumar, Alok & Kumar, Arvind, 2019. "Enhancing ice slurry generation by using inclined cavity for subzero cold thermal energy storage: Simulation, experiment and performance analysis," Energy, Elsevier, vol. 183(C), pages 398-414.
More about this item
Keywords
Refrigeration; Phase change material; Hydrate; Slurry; Process optimization; CO2; TBPB; Ice;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1282-1290. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.