IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp1096-1114.html
   My bibliography  Save this article

Review of energy systems deployment and development of offshore wind energy resource map at the coastal regions of Africa

Author

Listed:
  • Olaofe, Z.O.

Abstract

The objective of this work is to evaluate the offshore wind conditions at coastal regions for energy resource map development. Thus, the review of installed energy technologies for electricity access across African nations as well as the offshore wind resource distribution for energy development based on satellite observations derived from remote sensing systems is presented. It is believed that ideal location for the electricity generation, renewable energy development and markets could be identified by determining the enormous wind resource distribution at the coastal zones. Thus, 6-hourly surface wind dataset recorded for a period of 2001–2011 across the coasts were proposed for identifying potential turbine sites. Based on the seasonal climate variability, the energy distribution maps of the offshore wind resource at 10 and 160 m heights were assessed from East to South, West and North coasts of Africa. In addition, the validity of satellite observations in processing of CCMP L3.0 wind for energy resource assessment across Africa is investigated. Furthermore, the offshore energy potential of two typical turbine (small- and utility-scale) models is evaluated based on the wind resource variation for these periods. For sustainable energy development, results revealed that the coastal zones possess excellent offshore wind energy resource potential for supporting electricity requirements. Annual and seasonal capacity factors of both small and large-scale turbines across the coastal zone were also assessed, ranging between 17.6 and 51.2%. In the achievement of 2020–2030 energy transition goals from the conventional to clean and diversified energy mix as well as a low carbon society, the studied findings offer useful energy resource information for a sustainable project and increasing penetrations of large-scale wind power on the electric grids across Africa.

Suggested Citation

  • Olaofe, Z.O., 2018. "Review of energy systems deployment and development of offshore wind energy resource map at the coastal regions of Africa," Energy, Elsevier, vol. 161(C), pages 1096-1114.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1096-1114
    DOI: 10.1016/j.energy.2018.07.185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pallabazzer, Rodolfo & Sebbit, Adam M., 1998. "The wind resources in Uganda," Renewable Energy, Elsevier, vol. 13(1), pages 41-49.
    2. Mentis, Dimitrios & Hermann, Sebastian & Howells, Mark & Welsch, Manuel & Siyal, Shahid Hussain, 2015. "Assessing the technical wind energy potential in Africa a GIS-based approach," Renewable Energy, Elsevier, vol. 83(C), pages 110-125.
    3. van der Zwaan, Bob & Kober, Tom & Longa, Francesco Dalla & van der Laan, Anouk & Jan Kramer, Gert, 2018. "An integrated assessment of pathways for low-carbon development in Africa," Energy Policy, Elsevier, vol. 117(C), pages 387-395.
    4. Abdullahi Abubakar Mas’ud & Asan Vernyuy Wirba & Jorge Alfredo Ardila-Rey & Ricardo Albarracín & Firdaus Muhammad-Sukki & Álvaro Jaramillo Duque & Nurul Aini Bani & Abu Bakar Munir, 2017. "Wind Power Potentials in Cameroon and Nigeria: Lessons from South Africa," Energies, MDPI, vol. 10(4), pages 1-19, March.
    5. Safari, Bonfils & Gasore, Jimmy, 2010. "A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda," Renewable Energy, Elsevier, vol. 35(12), pages 2874-2880.
    6. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    7. Ahmed Shata, A.S. & Hanitsch, R., 2006. "Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt," Renewable Energy, Elsevier, vol. 31(8), pages 1183-1202.
    8. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
    9. Steffen, Bjarne, 2018. "The importance of project finance for renewable energy projects," Energy Economics, Elsevier, vol. 69(C), pages 280-294.
    10. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    11. Bekele, Getachew & Palm, Björn, 2009. "Wind energy potential assessment at four typical locations in Ethiopia," Applied Energy, Elsevier, vol. 86(3), pages 388-396, March.
    12. Omer, Abdeen Mustafa, 2000. "Wind energy in Sudan," Renewable Energy, Elsevier, vol. 19(3), pages 399-411.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Fa & Sun, Fubao & Liu, Wenbin & Wang, Tingting & Wang, Hong & Wang, Xunming & Lim, Wee Ho, 2019. "On wind speed pattern and energy potential in China," Applied Energy, Elsevier, vol. 236(C), pages 867-876.
    2. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Anan Zhang & Hong Zhang & Meysam Qadrdan & Wei Yang & Xiaolong Jin & Jianzhong Wu, 2019. "Optimal Planning of Integrated Energy Systems for Offshore Oil Extraction and Processing Platforms," Energies, MDPI, vol. 12(4), pages 1-28, February.
    4. Dong, Cong & Huang, Guohe (Gordon) & Cheng, Guanhui, 2021. "Offshore wind can power Canada," Energy, Elsevier, vol. 236(C).
    5. Nezhad, M. Majidi & Neshat, M. & Heydari, A. & Razmjoo, A. & Piras, G. & Garcia, D. Astiaso, 2021. "A new methodology for offshore wind speed assessment integrating Sentinel-1, ERA-Interim and in-situ measurement," Renewable Energy, Elsevier, vol. 172(C), pages 1301-1313.
    6. Majidi Nezhad, Meysam & Heydari, Azim & Neshat, Mehdi & Keynia, Farshid & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "A Mediterranean Sea Offshore Wind classification using MERRA-2 and machine learning models," Renewable Energy, Elsevier, vol. 190(C), pages 156-166.
    7. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2019. "Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model," Energy, Elsevier, vol. 187(C).
    8. Fathy, Ahmed & Rezk, Hegazy & Yousri, Dalia & Kandil, Tarek & Abo-Khalil, Ahmed G., 2022. "Real-time bald eagle search approach for tracking the maximum generated power of wind energy conversion system," Energy, Elsevier, vol. 249(C).
    9. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    10. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    11. Wasiu Olalekan Idris & Mohd Zamri Ibrahim & Aliashim Albani, 2020. "The Status of the Development of Wind Energy in Nigeria," Energies, MDPI, vol. 13(23), pages 1-16, November.
    12. Koo, Taehyung & Kim, Young Sang & Lee, Dongkeun & Yu, Sangseok & Lee, Young Duk, 2021. "System simulation and exergetic analysis of solid oxide fuel cell power generation system with cascade configuration," Energy, Elsevier, vol. 214(C).
    13. He, Junyi & Chan, P.W. & Li, Qiusheng & Lee, C.W., 2020. "Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong," Energy, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouraima, Mouhamed Bayane & Ayyildiz, Ertugrul & Badi, Ibrahim & Murat, Mirac & Es, Huseyin Avni & Pamucar, Dragan, 2024. "A decision support system for assessing the barriers and policies for wind energy deployment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    3. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    4. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    5. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    6. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    7. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Farabi-Asl, Hadi, 2018. "A comprehensive approach for wind power plant potential assessment, application to northwestern Iran," Energy, Elsevier, vol. 164(C), pages 344-358.
    8. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    9. Diaf, S. & Notton, G., 2013. "Evaluation of electricity generation and energy cost of wind energy conversion systems in southern Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 379-390.
    10. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    11. Belabes, B. & Youcefi, A. & Guerri, O. & Djamai, M. & Kaabeche, A., 2015. "Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1245-1255.
    12. Gökçek, Murat & Genç, Mustafa Serdar, 2009. "Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey," Applied Energy, Elsevier, vol. 86(12), pages 2731-2739, December.
    13. Fırtın, Ebubekir & Güler, Önder & Akdağ, Seyit Ahmet, 2011. "Investigation of wind shear coefficients and their effect on electrical energy generation," Applied Energy, Elsevier, vol. 88(11), pages 4097-4105.
    14. Francis Oloo & Kamran Safi & Jagannath Aryal, 2018. "Predicting Migratory Corridors of White Storks, Ciconia ciconia , to Enhance Sustainable Wind Energy Planning: A Data-Driven Agent-Based Model," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    15. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    16. Ohunakin, S. Olayinka & Ojolo, S. Joshua & Ogunsina, S. Babatunde & Dinrifo, R. Rufus, 2012. "Analysis of cost estimation and wind energy evaluation using wind energy conversion systems (WECS) for electricity generation in six selected high altitude locations in Nigeria," Energy Policy, Elsevier, vol. 48(C), pages 594-600.
    17. Katinas, Vladislovas & Marčiukaitis, Mantas & Gecevičius, Giedrius & Markevičius, Antanas, 2017. "Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania," Renewable Energy, Elsevier, vol. 113(C), pages 190-201.
    18. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    19. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    20. Seel, Joachim & Barbose, Galen L. & Wiser, Ryan H., 2014. "An analysis of residential PV system price differences between the United States and Germany," Energy Policy, Elsevier, vol. 69(C), pages 216-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1096-1114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.