IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp867-876.html
   My bibliography  Save this article

On wind speed pattern and energy potential in China

Author

Listed:
  • Liu, Fa
  • Sun, Fubao
  • Liu, Wenbin
  • Wang, Tingting
  • Wang, Hong
  • Wang, Xunming
  • Lim, Wee Ho

Abstract

To achieve sustainable socioeconomic development as part of the global community, China has set ambitious goals for developing wind power within its national energy security framework. Existing wind power density maps in China present some knowledge gaps (e.g., lack of spatiotemporal resolution/characteristics and estimates at the height of a typical wind turbine). To address them, we combine the advantages of large network of wind speed observations (2430 meteorological stations; 2006–2015) and the grid-based method in order to create the spatiotemporal distributions of wind resource at the hub height. We found that the spatiotemporal variability of wind resources in China is apparent. Nationally, the annual mean wind speed and wind power density are 4.09 m s−1 and 164.1 W m−2, respectively. Spatially, Northeast China has the highest wind potential with annual mean wind speed and power density 4.64 m s−1 and 204 W m−2, while South China has the lowest wind potential annual mean wind speed and power density 3.55 m s−1 and 97.4 W m−2. Temporally, the wind resources over the entire China are higher in the cold season (spring and winter with peaks in April) than those in the warm season (summer and autumn with bottoms in August). Specifically, the wind power output in “Three North” region (including Northeast China, North China and Northwest China) in the cold season is 1.4 times higher than that in the warm season. Some coastal regions in East China have relatively high wind power density (>500 W m−2) and small seasonal variations. These findings should help decision-makers to identify the areas suitable for utilizing wind energy, and optimizing power generation and transmission across the grid for better system performance.

Suggested Citation

  • Liu, Fa & Sun, Fubao & Liu, Wenbin & Wang, Tingting & Wang, Hong & Wang, Xunming & Lim, Wee Ho, 2019. "On wind speed pattern and energy potential in China," Applied Energy, Elsevier, vol. 236(C), pages 867-876.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:867-876
    DOI: 10.1016/j.apenergy.2018.12.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jie & Wang, Jianzhou & Chi, Dezhong, 2013. "Wind energy potential assessment for the site of Inner Mongolia in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 215-228.
    2. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    3. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    4. Wang, Zhongying & Qin, Haiyan & Lewis, Joanna I., 2012. "China's wind power industry: Policy support, technological achievements, and emerging challenges," Energy Policy, Elsevier, vol. 51(C), pages 80-88.
    5. Jung, Christopher & Schindler, Dirk, 2018. "On the inter-annual variability of wind energy generation – A case study from Germany," Applied Energy, Elsevier, vol. 230(C), pages 845-854.
    6. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
    7. Hernández-Escobedo, Q. & Saldaña-Flores, R. & Rodríguez-García, E.R. & Manzano-Agugliaro, F., 2014. "Wind energy resource in Northern Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 890-914.
    8. Jiang, Dong & Zhuang, Dafang & Huang, Yaohuan & Wang, Jianhua & Fu, Jingying, 2013. "Evaluating the spatio-temporal variation of China's offshore wind resources based on remotely sensed wind field data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 142-148.
    9. Olaofe, Z.O., 2018. "Review of energy systems deployment and development of offshore wind energy resource map at the coastal regions of Africa," Energy, Elsevier, vol. 161(C), pages 1096-1114.
    10. Hanslian, David & Hošek, Jiří, 2015. "Combining the VAS 3D interpolation method and Wind Atlas methodology to produce a high-resolution wind resource map for the Czech Republic," Renewable Energy, Elsevier, vol. 77(C), pages 291-299.
    11. Li, Delei & Geyer, Beate & Bisling, Peter, 2016. "A model-based climatology analysis of wind power resources at 100-m height over the Bohai Sea and the Yellow Sea," Applied Energy, Elsevier, vol. 179(C), pages 575-589.
    12. Zhang, Sufang & Andrews-Speed, Philip & Li, Sitao, 2018. "To what extent will China's ongoing electricity market reforms assist the integration of renewable energy?," Energy Policy, Elsevier, vol. 114(C), pages 165-172.
    13. Aman, M.M. & Jasmon, G.B. & Ghufran, A. & Bakar, A.H.A. & Mokhlis, H., 2013. "Investigating possible wind energy potential to meet the power shortage in Karachi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 528-542.
    14. Sahu, Bikash Kumar, 2018. "Wind energy developments and policies in China: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1393-1405.
    15. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    16. González-Longatt, Francisco & Medina, Humberto & Serrano González, Javier, 2015. "Spatial interpolation and orographic correction to estimate wind energy resource in Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 1-16.
    17. Isabelle Tobin & Robert Vautard & Irena Balog & François-Marie Bréon & Sonia Jerez & Paolo Ruti & Françoise Thais & Mathieu Vrac & Pascal Yiou, 2015. "Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections," Climatic Change, Springer, vol. 128(1), pages 99-112, January.
    18. Zhang, Sufang & Li, Xingmei, 2012. "Large scale wind power integration in China: Analysis from a policy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1110-1115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Tuo & Min, Yong & Zhou, Guiping & Chen, Lei & Chen, Qun & Xu, Fei & Luo, Huanhuan, 2021. "Hierarchical dispatch method for integrated heat and power systems considering the heat transfer process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. González-Longatt, Francisco & Medina, Humberto & Serrano González, Javier, 2015. "Spatial interpolation and orographic correction to estimate wind energy resource in Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 1-16.
    3. Tomas Baležentis & Dalia Štreimikienė, 2019. "Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China," Energies, MDPI, vol. 12(6), pages 1-21, March.
    4. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Liu, Fa & Wang, Xunming & Sun, Fubao & Kleidon, Axel, 2023. "Potential impact of global stilling on wind energy production in China," Energy, Elsevier, vol. 263(PB).
    6. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    7. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    8. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    9. Nie, Bingchuan & Li, Jiachun, 2018. "Technical potential assessment of offshore wind energy over shallow continent shelf along China coast," Renewable Energy, Elsevier, vol. 128(PA), pages 391-399.
    10. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.
    11. Li, Jiangxia & Pan, Shunqi & Chen, Yongping & Yao, Yu & Xu, Conghao, 2022. "Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas," Energy, Elsevier, vol. 260(C).
    12. Yang, Zihao & Dong, Sheng, 2024. "A novel framework for wind energy assessment at multi-time scale based on non-stationary wind speed models: A case study in China," Renewable Energy, Elsevier, vol. 226(C).
    13. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    14. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    15. Dongwen Chen & Zheng Chu, 2024. "Enhancing Power Supply Flexibility in Renewable Energy Systems with Optimized Energy Dispatch in Coupled CHP, Heat Pump, and Thermal Storage," Energies, MDPI, vol. 17(12), pages 1-29, June.
    16. Zhuo Chen & Wei Li & Junhong Guo & Zhe Bao & Zhangrong Pan & Baodeng Hou, 2020. "Projection of Wind Energy Potential over Northern China Using a Regional Climate Model," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    17. Grafström, Jonas, 2019. "Public policy failures related to China´s Wind Power Development," Ratio Working Papers 320, The Ratio Institute.
    18. Wang, Xiaozhen & Zou, Honghui, 2018. "Study on the effect of wind power industry policy types on the innovation performance of different ownership enterprises: Evidence from China," Energy Policy, Elsevier, vol. 122(C), pages 241-252.
    19. Zeng, Bo & Zeng, Ming & Xue, Song & Cheng, Min & Wang, Yuejin & Feng, Junjie, 2014. "Overall review of wind power development in Inner Mongolia: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 614-624.
    20. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:867-876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.