IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1391-d211482.html
   My bibliography  Save this article

Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power

Author

Listed:
  • Mehr Gul

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    Department of Electrical Engineering, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Pakistan)

  • Nengling Tai

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Wentao Huang

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Muhammad Haroon Nadeem

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Moduo Yu

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Wind power is the fastest growing and environmentally sustainable source of energy among all available renewable energy resources. The primary objective of this paper is to analyze the wind characteristics and power potential at Hyderabad, Southeastern province in Pakistan. Two years of wind speed data measured at 10 m above ground level (AGL) have been considered in this study. The annually, monthly, and seasonal variations in wind speed were analyzed, and minimum, maximum, and average values of recorded wind speeds are presented in this paper. Weibull and Rayleigh distribution functions have been applied to analyze the wind characteristics and evaluate the wind power potential of the proposed site. The Weibull shape k and scale c parameters have been estimated using the Weibull function. The higher values of k showed that the wind speed is steady at the site. The average wind speed was found above 6 m/s throughout the year. The most probable wind speed (V mp ) and maximum carrying energy (V maxE ) wind speed were also calculated using Weibull parameters. Root mean square error (RMSE), the coefficient of determination (R 2 ), and mean bias error (MBE) were computed to ensure the good fit of Weibull distribution function. The annual average wind power and energy densities were estimated at more than 255 W/m 2 and 2245 kWh/m 2 , respectively. The power density calculated by Weibull and Rayleigh functions was compared with that calculated by using measured wind data. The energy output and capacity factor of different commercially available wind turbines (WTs), i.e., power ratings from 0.33 to 2.75 MW, have been calculated. The cost of energy was estimated and ranged from $19.27 to $32.80 per MWh. Wind power potential and economic analysis of the collected data reveals that the site is suitable for developing wind power generation projects to power the local communities.

Suggested Citation

  • Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1391-:d:211482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pishgar-Komleh, S.H. & Keyhani, A. & Sefeedpari, P., 2015. "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 313-322.
    2. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    3. Celik, Ali N., 2011. "Review of Turkey's current energy status: A case study for wind energy potential of Çanakkale province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2743-2749, August.
    4. Wais, Piotr, 2017. "Two and three-parameter Weibull distribution in available wind power analysis," Renewable Energy, Elsevier, vol. 103(C), pages 15-29.
    5. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    6. Celik, Ali Naci, 2004. "A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey," Renewable Energy, Elsevier, vol. 29(4), pages 593-604.
    7. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    8. Terrence Manyeredzi & Golden Makaka, 2018. "An Assessment of the Wind Power Generation Potential of Built Environment Wind Turbine (BEWT) Systems in Fort Beaufort, South Africa," Sustainability, MDPI, vol. 10(5), pages 1-9, April.
    9. Arslan, Talha & Bulut, Y. Murat & Altın Yavuz, Arzu, 2014. "Comparative study of numerical methods for determining Weibull parameters for wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 820-825.
    10. Gökçek, Murat & Genç, Mustafa Serdar, 2009. "Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey," Applied Energy, Elsevier, vol. 86(12), pages 2731-2739, December.
    11. Bekele, Getachew & Palm, Björn, 2009. "Wind energy potential assessment at four typical locations in Ethiopia," Applied Energy, Elsevier, vol. 86(3), pages 388-396, March.
    12. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    13. Gabbasa, Mohamed & Sopian, Kamaruzzaman & Yaakob, Zahira & Faraji Zonooz, M.Reza & Fudholi, Ahmad & Asim, Nilofar, 2013. "Review of the energy supply status for sustainable development in the Organization of Islamic Conference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 18-28.
    14. Arslan, Oguz, 2010. "Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey," Energy, Elsevier, vol. 35(1), pages 120-131.
    15. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2007. "Techno-economics of small wind electric generator projects for decentralized power supply in India," Energy Policy, Elsevier, vol. 35(4), pages 2491-2506, April.
    16. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    17. Kamau, J.N. & Kinyua, R. & Gathua, J.K., 2010. "6 years of wind data for Marsabit, Kenya average over 14m/s at 100m hub height; An analysis of the wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1298-1302.
    18. Mostafaeipour, Ali & Sedaghat, Ahmad & Ghalishooyan, Morteza & Dinpashoh, Yagob & Mirhosseini, Mojtaba & Sefid, Mohammad & Pour-Rezaei, Maryam, 2013. "Evaluation of wind energy potential as a power generation source for electricity production in Binalood, Iran," Renewable Energy, Elsevier, vol. 52(C), pages 222-229.
    19. Yaniktepe, B. & Koroglu, T. & Savrun, M.M., 2013. "Investigation of wind characteristics and wind energy potential in Osmaniye, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 703-711.
    20. Carta, J.A. & Ramírez, P., 2007. "Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions," Renewable Energy, Elsevier, vol. 32(3), pages 518-531.
    21. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    22. Vogiatzis, N. & Kotti, K. & Spanomitsios, S. & Stoukides, M., 2004. "Analysis of wind potential and characteristics in North Aegean, Greece," Renewable Energy, Elsevier, vol. 29(7), pages 1193-1208.
    23. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    24. Carneiro, Tatiane C. & Melo, Sofia P. & Carvalho, Paulo C.M. & Braga, Arthur Plínio de S., 2016. "Particle Swarm Optimization method for estimation of Weibull parameters: A case study for the Brazilian northeast region," Renewable Energy, Elsevier, vol. 86(C), pages 751-759.
    25. Akdag, S.A. & Bagiorgas, H.S. & Mihalakakou, G., 2010. "Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean," Applied Energy, Elsevier, vol. 87(8), pages 2566-2573, August.
    26. Rehman, S & Halawani, T.O & Mohandes, M, 2003. "Wind power cost assessment at twenty locations in the kingdom of Saudi Arabia," Renewable Energy, Elsevier, vol. 28(4), pages 573-583.
    27. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    28. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    29. Aman, M.M. & Jasmon, G.B. & Ghufran, A. & Bakar, A.H.A. & Mokhlis, H., 2013. "Investigating possible wind energy potential to meet the power shortage in Karachi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 528-542.
    30. Ullah, Irfan & Chaudhry, Qamar-uz-Zaman & Chipperfield, Andrew J., 2010. "An evaluation of wind energy potential at Kati Bandar, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 856-861, February.
    31. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    32. Lashin, Aref & Shata, Ahmed, 2012. "An analysis of wind power potential in Port Said, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6660-6667.
    33. Jiang, He & Wang, Jianzhou & Dong, Yao & Lu, Haiyan, 2015. "Comprehensive assessment of wind resources and the low-carbon economy: An empirical study in the Alxa and Xilin Gol Leagues of inner Mongolia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1304-1319.
    34. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    35. AL-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Alawi, Saleh, 2010. "Assessment of wind energy potential locations in Oman using data from existing weather stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1428-1436, June.
    36. Aliashim Albani & Mohd Zamri Ibrahim, 2017. "Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia," Energies, MDPI, vol. 10(3), pages 1-21, March.
    37. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    38. Bataineh, Khaled M. & Dalalah, Doraid, 2013. "Assessment of wind energy potential for selected areas in Jordan," Renewable Energy, Elsevier, vol. 59(C), pages 75-81.
    39. Mirza, Irfan Afzal & Khan, Nasim A. & Memon, Naeem, 2010. "Development of benchmark wind speed for Gharo and Jhimpir, Pakistan," Renewable Energy, Elsevier, vol. 35(3), pages 576-582.
    40. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    41. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Castro-Santos & Maite deCastro & Xurxo Costoya & Almudena Filgueira-Vizoso & Isabel Lamas-Galdo & Americo Ribeiro & João M. Dias & Moncho Gómez-Gesteira, 2021. "Economic Feasibility of Floating Offshore Wind Farms Considering Near Future Wind Resources: Case Study of Iberian Coast and Bay of Biscay," IJERPH, MDPI, vol. 18(5), pages 1-16, March.
    2. Kanwal, Saira & Mehran, Muhammad Taqi & Hassan, Muhammad & Anwar, Mustafa & Naqvi, Salman Raza & Khoja, Asif Hussain, 2022. "An integrated future approach for the energy security of Pakistan: Replacement of fossil fuels with syngas for better environment and socio-economic development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Jamshid Ali Turi & Joanna Rosak-Szyrocka & Maryam Mansoor & Hira Asif & Ahad Nazir & Daniel Balsalobre-Lorente, 2022. "Assessing Wind Energy Projects Potential in Pakistan: Challenges and Way Forward," Energies, MDPI, vol. 15(23), pages 1-21, November.
    4. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2020. "Evaluation of Wind Energy Potential Using an Optimum Approach based on Maximum Distance Metric," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    5. Abdoulkader Ibrahim Idriss & Ramadan Ali Ahmed & Hamda Abdi Atteyeh & Omar Abdoulkader Mohamed & Haitham Saad Mohamed Ramadan, 2023. "Techno-Economic Potential of Wind-Based Green Hydrogen Production in Djibouti: Literature Review and Case Studies," Energies, MDPI, vol. 16(16), pages 1-19, August.
    6. Varadharajan Sankaralingam Sriraja Balaguru & Nesamony Jothi Swaroopan & Kannadasan Raju & Mohammed H. Alsharif & Mun-Kyeom Kim, 2021. "Techno-Economic Investigation of Wind Energy Potential in Selected Sites with Uncertainty Factors," Sustainability, MDPI, vol. 13(4), pages 1-31, February.
    7. Nurul Hiron & Nundang Busaeri & Sutisna Sutisna & Nurmela Nurmela & Aceng Sambas, 2021. "Design of Hybrid (PV-Diesel) System for Tourist Island in Karimunjawa Indonesia," Energies, MDPI, vol. 14(24), pages 1-24, December.
    8. Suzer, Ahmet Esat & Atasoy, Vehbi Emrah & Ekici, Selcuk, 2021. "Developing a holistic simulation approach for parametric techno-economic analysis of wind energy," Energy Policy, Elsevier, vol. 149(C).
    9. Wu, Hong, 2023. "Evaluating the role of renewable energy investment resources and green finance on the economic performance: Evidence from OECD economies," Resources Policy, Elsevier, vol. 80(C).
    10. Siddik Shakul Hameed & Ramesh Ramadoss & Kannadasan Raju & GM Shafiullah, 2022. "A Framework-Based Wind Forecasting to Assess Wind Potential with Improved Grey Wolf Optimization and Support Vector Regression," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    11. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    2. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    3. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.
    4. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    5. Bahrami, Arian & Teimourian, Amir & Okoye, Chiemeka Onyeka & Khosravi, Nima, 2019. "Assessing the feasibility of wind energy as a power source in Turkmenistan; a major opportunity for Central Asia's energy market," Energy, Elsevier, vol. 183(C), pages 415-427.
    6. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    7. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    8. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2020. "Evaluation of Wind Energy Potential Using an Optimum Approach based on Maximum Distance Metric," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    9. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    10. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    11. Wais, Piotr, 2017. "A review of Weibull functions in wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1099-1107.
    12. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    13. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    14. Wais, Piotr, 2017. "Two and three-parameter Weibull distribution in available wind power analysis," Renewable Energy, Elsevier, vol. 103(C), pages 15-29.
    15. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Farabi-Asl, Hadi, 2018. "A comprehensive approach for wind power plant potential assessment, application to northwestern Iran," Energy, Elsevier, vol. 164(C), pages 344-358.
    16. Hu, Qinghua & Wang, Yun & Xie, Zongxia & Zhu, Pengfei & Yu, Daren, 2016. "On estimating uncertainty of wind energy with mixture of distributions," Energy, Elsevier, vol. 112(C), pages 935-962.
    17. Baseer, M.A. & Meyer, J.P. & Alam, Md. Mahbub & Rehman, S., 2015. "Wind speed and power characteristics for Jubail industrial city, Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1193-1204.
    18. Bilal, Boudy & Adjallah, Kondo Hloindo & Yetilmezsoy, Kaan & Bahramian, Majid & Kıyan, Emel, 2021. "Determination of wind potential characteristics and techno-economic feasibility analysis of wind turbines for Northwest Africa," Energy, Elsevier, vol. 218(C).
    19. Yaniktepe, B. & Koroglu, T. & Savrun, M.M., 2013. "Investigation of wind characteristics and wind energy potential in Osmaniye, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 703-711.
    20. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2018. "Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2526-2540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1391-:d:211482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.