IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3708-d1444113.html
   My bibliography  Save this article

Enhancing the Performance of Savonius Wind Turbines: A Review of Advances Using Multiple Parameters

Author

Listed:
  • Anesu Godfrey Chitura

    (Physics Department, University of Fort Hare, 1 King Williams Town Road, Private Bag X1314, Alice 5700, South Africa)

  • Patrick Mukumba

    (Physics Department, University of Fort Hare, 1 King Williams Town Road, Private Bag X1314, Alice 5700, South Africa)

  • Ndanduleni Lethole

    (Physics Department, University of Fort Hare, 1 King Williams Town Road, Private Bag X1314, Alice 5700, South Africa)

Abstract

The need to globalize and implement the fourth industrial revolution has led to increased interest in research on renewable energy harvesting equipment. Wind and solar have been the fastest growing sources of energy and have been used to reduce our dependency on fossil fuels for energy. The Savonius wind turbine is an attractive option for regions with high turbulence intensity and low wind speeds due to its advantages over other small-scale vertical-axis wind turbines. These advantages include its simple design, satisfactory performance at lower speeds, and ability to turn independent of the wind flow direction. However, Savonius wind turbines face several challenges. The most significant one being the negative torque generated during operation. This negative torque is caused by the interaction between the exhaust air and the returning blade, thus reducing efficiency, as the turbine has to overcome this additional force. To improve on the efficiency, various assessments and optimization techniques have been employed. These focus on the geometric parameters of the Savonius wind turbine as well as installation augmentation techniques. This article reviews and reports on several combinations of parametric performance-influencing adjustments and power augmentation techniques applied to Savonius wind turbines. The article concludes by proposing future research directions.

Suggested Citation

  • Anesu Godfrey Chitura & Patrick Mukumba & Ndanduleni Lethole, 2024. "Enhancing the Performance of Savonius Wind Turbines: A Review of Advances Using Multiple Parameters," Energies, MDPI, vol. 17(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3708-:d:1444113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.
    2. Kothe, Leonardo Brito & Möller, Sérgio Viçosa & Petry, Adriane Prisco, 2020. "Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine," Renewable Energy, Elsevier, vol. 148(C), pages 627-638.
    3. Kumail Abdulkareem Hadi Al-Gburi & Firas Basim Ismail Alnaimi & Balasem Abdulameer Jabbar Al-quraishi & Ee Sann Tan & Ali Kamil Kareem, 2023. "Enhancing Savonius Vertical Axis Wind Turbine Performance: A Comprehensive Approach with Numerical Analysis and Experimental Investigations," Energies, MDPI, vol. 16(10), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    2. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    3. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    4. Reza Norouztabar & Seyed Soheil Mousavi Ajarostaghi & Seyed Sina Mousavi & Payam Nejat & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "On the Performance of a Modified Triple Stack Blade Savonius Wind Turbine as a Function of Geometrical Parameters," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    5. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    6. Jesús Rascón & Wildor Gosgot Angeles & Manuel Oliva-Cruz & Miguel Ángel Barrena Gurbillón, 2022. "Wind Characteristics and Wind Energy Potential in Andean Towns in Northern Peru between 2016 and 2020: A Case Study of the City of Chachapoyas," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    7. Khan, Zain Ullah & Ali, Zaib & Uddin, Emad, 2022. "Performance enhancement of vertical axis hydrokinetic turbine using novel blade profile," Renewable Energy, Elsevier, vol. 188(C), pages 801-818.
    8. Kang, Can & Zhao, Hexiang & Zhang, Yongchao & Ding, Kejin, 2021. "Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor," Renewable Energy, Elsevier, vol. 172(C), pages 290-303.
    9. Zygmunt Szczerba & Piotr Szczerba & Kamil Szczerba & Marek Szumski & Krzysztof Pytel, 2023. "Wind Tunnel Experimental Study on the Efficiency of Vertical-Axis Wind Turbines via Analysis of Blade Pitch Angle Influence," Energies, MDPI, vol. 16(13), pages 1-21, June.
    10. Hu, Wenyu & E, Jiaqiang & Leng, Erwei & Zhang, Feng & Chen, Jingwei & Ma, Yinjie, 2023. "Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 263(PE).
    11. Zhang, Dayu & Guo, Penghua & Qian, Yuqi & Qiao, Hu & Li, Jingyin, 2024. "Analysis and optimization of a deep-water in-situ power generation system based on novel ductless Archimedes screw hydrokinetic turbines," Renewable Energy, Elsevier, vol. 225(C).
    12. Altaf Hussain Rajpar & Imran Ali & Ahmad E. Eladwi & Mohamed Bashir Ali Bashir, 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review," Energies, MDPI, vol. 14(16), pages 1-23, August.
    13. Kumail Abdulkareem Hadi Al-Gburi & Balasem Abdulameer Jabbar Al-quraishi & Firas Basim Ismail Alnaimi & Ee Sann Tan & Ali Hussein Shamman Al-Safi, 2022. "Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 15(23), pages 1-23, November.
    14. Chen, Yunrui & Guo, Penghua & Zhang, Dayu & Chai, Kaixin & Zhao, Chenxi & Li, Jingyin, 2022. "Power improvement of a cluster of three Savonius wind turbines using the variable-speed control method," Renewable Energy, Elsevier, vol. 193(C), pages 832-842.
    15. Łukasz Malicki & Ziemowit Malecha & Błażej Baran & Rafał Juszko, 2024. "Numerical Investigation of a Novel Type of Rotor Working in a Palisade Configuration," Energies, MDPI, vol. 17(13), pages 1-30, June.
    16. Nematollahi, Omid & Alamdari, Pouria & Jahangiri, Mehdi & Sedaghat, Ahmad & Alemrajabi, Ali Akbar, 2019. "A techno-economical assessment of solar/wind resources and hydrogen production: A case study with GIS maps," Energy, Elsevier, vol. 175(C), pages 914-930.

    More about this item

    Keywords

    savonius; parameters; renewable;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3708-:d:1444113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.