IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v24y2013icp73-83.html
   My bibliography  Save this article

Review on the numerical investigations into the design and development of Savonius wind rotors

Author

Listed:
  • Roy, Sukanta
  • Saha, Ujjwal K.

Abstract

In recent era, research and development activities in the field of renewable energy, especially wind and solar, have been considerably increased, due to the worldwide energy crisis and high global emission. However, the available technical designs are not yet adequate to develop a reliable distributed wind energy converter for low wind speed conditions. The Savonius rotor appears to be particularly promising for such conditions, but suffers from a low efficiency. Till now, a number of experimentations have been carried out in the area of Savonius rotor to increase its efficiency. These large-scale experimentations involve massive costs and hazards. In this context, computational studies have shown a significant importance to carry out the research with large number of physical designs and parameters. Over the past four decades, investigations have been carried out with various computational methodologies and turbulence models to optimize the different parameters and hence the efficiency of these rotors. In the present paper, a detailed review of various computational methods addressing the influence of various operating parameters and augmentation techniques has been reported. From this review study, it is observed that with the selection of a proper computational methodology, the design, performance, and efficiency of a Savonius rotor can be enhanced significantly.

Suggested Citation

  • Roy, Sukanta & Saha, Ujjwal K., 2013. "Review on the numerical investigations into the design and development of Savonius wind rotors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 73-83.
  • Handle: RePEc:eee:rensus:v:24:y:2013:i:c:p:73-83
    DOI: 10.1016/j.rser.2013.03.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113002190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.03.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afungchui, David & Kamoun, Baddreddinne & Helali, Ali & Ben Djemaa, Abdellatif, 2010. "The unsteady pressure field and the aerodynamic performances of a Savonius rotor based on the discrete vortex method," Renewable Energy, Elsevier, vol. 35(1), pages 307-313.
    2. Mohamed, M.H. & Janiga, G. & Pap, E. & Thévenin, D., 2010. "Optimization of Savonius turbines using an obstacle shielding the returning blade," Renewable Energy, Elsevier, vol. 35(11), pages 2618-2626.
    3. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    4. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Performance tests on helical Savonius rotors," Renewable Energy, Elsevier, vol. 34(3), pages 521-529.
    5. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    6. Pope, K. & Dincer, I. & Naterer, G.F., 2010. "Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines," Renewable Energy, Elsevier, vol. 35(9), pages 2102-2113.
    7. Kotb, M. A. & Aldoss, T. K., 1991. "Flowfield around a partially-blocked Savonius rotor," Applied Energy, Elsevier, vol. 38(2), pages 117-132.
    8. Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
    9. Pope, K. & Rodrigues, V. & Doyle, R. & Tsopelas, A. & Gravelsins, R. & Naterer, G.F. & Tsang, E., 2010. "Effects of stator vanes on power coefficients of a zephyr vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(5), pages 1043-1051.
    10. Altan, Burçin Deda & Atılgan, Mehmet, 2010. "The use of a curtain design to increase the performance level of a Savonius wind rotors," Renewable Energy, Elsevier, vol. 35(4), pages 821-829.
    11. Gupta, R. & Biswas, A. & Sharma, K.K., 2008. "Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor," Renewable Energy, Elsevier, vol. 33(9), pages 1974-1981.
    12. Tabassum, S.A. & Probert, S.D., 1987. "Vertical-axis wind turbine: A modified design," Applied Energy, Elsevier, vol. 28(1), pages 59-67.
    13. Menet, J.-L., 2004. "A double-step Savonius rotor for local production of electricity: a design study," Renewable Energy, Elsevier, vol. 29(11), pages 1843-1862.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.
    2. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    3. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    4. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    5. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    6. Andrea Alaimo & Antonio Esposito & Alberto Milazzo & Calogero Orlando & Flavio Trentacosti, 2013. "Slotted Blades Savonius Wind Turbine Analysis by CFD," Energies, MDPI, vol. 6(12), pages 1-17, December.
    7. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    8. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    9. Zhou, Tong & Rempfer, Dietmar, 2013. "Numerical study of detailed flow field and performance of Savonius wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 373-381.
    10. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    11. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    12. El-Baz, A.R. & Youssef, K. & Mohamed, M.H., 2016. "Innovative improvement of a drag wind turbine performance," Renewable Energy, Elsevier, vol. 86(C), pages 89-98.
    13. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    14. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Damak, A. & Driss, Z. & Abid, M.S., 2013. "Experimental investigation of helical Savonius rotor with a twist of 180°," Renewable Energy, Elsevier, vol. 52(C), pages 136-142.
    16. Ramadan, A. & Yousef, K. & Said, M. & Mohamed, M.H., 2018. "Shape optimization and experimental validation of a drag vertical axis wind turbine," Energy, Elsevier, vol. 151(C), pages 839-853.
    17. Altan, Burçin Deda & Atılgan, Mehmet, 2010. "The use of a curtain design to increase the performance level of a Savonius wind rotors," Renewable Energy, Elsevier, vol. 35(4), pages 821-829.
    18. Oscar Garcia & Alain Ulazia & Mario del Rio & Sheila Carreno-Madinabeitia & Andoni Gonzalez-Arceo, 2019. "An Energy Potential Estimation Methodology and Novel Prototype Design for Building-Integrated Wind Turbines," Energies, MDPI, vol. 12(10), pages 1-21, May.
    19. Antar, E. & Elkhoury, M., 2019. "Parametric sizing optimization process of a casing for a Savonius Vertical Axis Wind Turbine," Renewable Energy, Elsevier, vol. 136(C), pages 127-138.
    20. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:24:y:2013:i:c:p:73-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.