IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v154y2018icp498-507.html
   My bibliography  Save this article

Combustion and emission characteristics of a light duty diesel engine fueled with hydro-processed renewable diesel

Author

Listed:
  • Singh, Devendra
  • Subramanian, K.A.
  • Bal, Rajaram
  • Singh, S.P.
  • Badola, R.

Abstract

Bio-fuels are being used in an internal combustion engine for curbing regulated emissions, green house gas (GHG) and as a key to address energy security issues. Hydro-processed renewable diesel (HRD) is perceived as one of the potential drop-in alternative fuels for compression ignition (CI) engine as its cetane number is higher than petro-diesel. Combustion analysis of a single cylinder CI engine fueled with HRD and petro-diesel were compared and correlated with emissions characteristics. Soot morphology of PM emissions of the engine fueled with diesel and HRD were also analysed using a high resolution transmission electron microscope (HR-TEM). The HRD fueled engine showed longer combustion duration; smaller in-cylinder pressure and heat release rate (HRR) peak than diesel. Particle sizes of soot particles collected from the exhaust of HRD fueled engine were significantly smaller than diesel particles. Nitrogen oxides (NOx), particulate matter (PM) and carbon dioxide (CO2) emissions of the engine fueled with HRD showed substantial reductions as compared to diesel. Hence, HRD fuel is considered as a promising alternative drop-in fuel for CI engine as it is offering a solution to the problem of NOx-PM trade-off associated with diesel engine.

Suggested Citation

  • Singh, Devendra & Subramanian, K.A. & Bal, Rajaram & Singh, S.P. & Badola, R., 2018. "Combustion and emission characteristics of a light duty diesel engine fueled with hydro-processed renewable diesel," Energy, Elsevier, vol. 154(C), pages 498-507.
  • Handle: RePEc:eee:energy:v:154:y:2018:i:c:p:498-507
    DOI: 10.1016/j.energy.2018.04.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    2. Singh, Devendra & Subramanian, K.A. & Garg, MO, 2018. "Comprehensive review of combustion, performance and emissions characteristics of a compression ignition engine fueled with hydroprocessed renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2947-2954.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Cho-Yu & Lin, Jhe-Kai & Wang, Wei-Cheng & Chen, Rong-Hong & Lin, Kun-Mo & Saputro, Herman & Cong, Huynh Thanh & Hong, Thong Duc & Tongroon, Manida, 2023. "The production of the hydro-processed renewable diesel (HRD) and its performances from a turbo-charged diesel engine," Energy, Elsevier, vol. 270(C).
    2. Alfredas Rimkus & Justas Žaglinskis & Saulius Stravinskas & Paulius Rapalis & Jonas Matijošius & Ákos Bereczky, 2019. "Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine," Energies, MDPI, vol. 12(15), pages 1-18, August.
    3. Wojcieszyk, Michał & Kroyan, Yuri & Kaario, Ossi & Larmi, Martti, 2023. "Prediction of heavy-duty engine performance for renewable fuels based on fuel property characteristics," Energy, Elsevier, vol. 285(C).
    4. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    5. Kroyan, Yuri & Wojcieszyk, Michal & Kaario, Ossi & Larmi, Martti & Zenger, Kai, 2020. "Modeling the end-use performance of alternative fuels in light-duty vehicles," Energy, Elsevier, vol. 205(C).
    6. Soriano, J.A. & García-Contreras, R. & Gómez, A. & Mata, C., 2019. "Comparative study of the effect of a new renewable paraffinic fuel on the combustion process of a light-duty diesel engine," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    3. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    4. Ruslans Smigins & Kristaps Sondors & Vilnis Pirs & Ilmars Dukulis & Gints Birzietis, 2023. "Studies of Engine Performance and Emissions at Full-Load Mode Using HVO, Diesel Fuel, and HVO5," Energies, MDPI, vol. 16(12), pages 1-14, June.
    5. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
    6. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2019. "Improvement of the 1,3-butadiene production process from lignin – A comparison with the gasification power generation process," Renewable Energy, Elsevier, vol. 135(C), pages 1303-1313.
    7. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    8. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    9. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    10. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    11. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    12. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.
    13. Hagos, Ftwi Y. & Ali, Obed M. & Mamat, Rizalman & Abdullah, Abdul A., 2017. "Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1281-1294.
    14. Peter N. Ciesielski & M. Brennan Pecha & Vivek S. Bharadwaj & Calvin Mukarakate & G. Jeremy Leong & Branden Kappes & Michael F. Crowley & Seonah Kim & Thomas D. Foust & Mark R. Nimlos, 2018. "Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    15. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    16. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    17. Mikulski, Maciej & Ambrosewicz-Walacik, Marta & Duda, Kamil & Hunicz, Jacek, 2020. "Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel," Renewable Energy, Elsevier, vol. 148(C), pages 739-755.
    18. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:154:y:2018:i:c:p:498-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.