IDEAS home Printed from https://ideas.repec.org/p/een/ccepwp/1405.html
   My bibliography  Save this paper

On the Mechanism of International Technology Diffusion for Energy Technological Progress

Author

Listed:
  • Wei Jin

    (Zhejiang University)

  • ZhongXiang Zhang

    (School of Economics, Fudan University)

Abstract

International diffusion of energy-saving technologies has received considerable attention in recent energy and climate economics studies. As a helpful methodological complement to the existing large-scale CGE/IAM-based modelling for energy and climate policy studies, this paper contributes to a transparent analytical model for an economically intuitive exposition on the fundamental mechanism of international technology diffusion for energy technological growth. We first develop an efficiency-improving vertical innovation model where energy technological progress is specified as an improvement in primary energy use efficiency. Then a variety-expanding horizontal innovation model is presented where energy technological progress is described as an expansion of energy technology variety. We show that in both models there is a cross-country convergence in the growth rate of energy technology in a long-run balanced growth path, but the absolute levels of energy technology tend to diverge due to cross-country differences in indigenous innovation efficiencies and knowledge absorptive capacities. An economy with a stronger capacity of absorbing foreign knowledge diffusion and undertaking indigenous research tends to have a higher level of energy technology.

Suggested Citation

  • Wei Jin & ZhongXiang Zhang, 2014. "On the Mechanism of International Technology Diffusion for Energy Technological Progress," CCEP Working Papers 1405, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University, revised Dec 2014.
  • Handle: RePEc:een:ccepwp:1405
    as

    Download full text from publisher

    File URL: https://ccep.crawford.anu.edu.au/sites/default/files/publication/ccep_crawford_anu_edu_au/2015-01/ccep1405.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Kolstad, Charles D., 1996. "Learning and Stock Effects in Environmental Regulation: The Case of Greenhouse Gas Emissions," Journal of Environmental Economics and Management, Elsevier, vol. 31(1), pages 1-18, July.
    3. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    4. Popp, David & Santen, Nidhi & Fisher-Vanden, Karen & Webster, Mort, 2013. "Technology variation vs. R&D uncertainty: What matters most for energy patent success?," Resource and Energy Economics, Elsevier, vol. 35(4), pages 505-533.
    5. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    6. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    7. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    8. Gary S. Becker & Kevin M. Murphy & Robert Tamura, 1994. "Human Capital, Fertility, and Economic Growth," NBER Chapters, in: Human Capital: A Theoretical and Empirical Analysis with Special Reference to Education, Third Edition, pages 323-350, National Bureau of Economic Research, Inc.
    9. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    10. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    11. Leimbach, Marian & Edenhofer, Ottmar, 2007. "Technological spillovers within multi-region models: Intertemporal optimization beyond the Negishi approach," Economic Modelling, Elsevier, vol. 24(2), pages 272-294, March.
    12. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    13. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    14. Alistair Ulph & David Ulph, "undated". "Global Warming, Irreversibility And Learning," ELSE working papers 056, ESRC Centre on Economics Learning and Social Evolution.
    15. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    16. Lovely, Mary & Popp, David, 2011. "Trade, technology, and the environment: Does access to technology promote environmental regulation?," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 16-35, January.
    17. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.
    18. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    19. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    20. Jacob A. Mincer, 1974. "Introduction to "Schooling, Experience, and Earnings"," NBER Chapters, in: Schooling, Experience, and Earnings, pages 1-4, National Bureau of Economic Research, Inc.
    21. Apostolakis, Bobby E., 1990. "Energy--capital substitutability/ complementarity : The dichotomy," Energy Economics, Elsevier, vol. 12(1), pages 48-58, January.
    22. Leimbach, Marian & Baumstark, Lavinia, 2010. "The impact of capital trade and technological spillovers on climate policies," Ecological Economics, Elsevier, vol. 69(12), pages 2341-2355, October.
    23. Löschel, Andreas & Otto, Vincent M., 2009. "Technological uncertainty and cost effectiveness of CO2 emission reduction," Energy Economics, Elsevier, vol. 31(Supplemen), pages 4-17.
    24. Rosenberg,Nathan, 1994. "Exploring the Black Box," Cambridge Books, Cambridge University Press, number 9780521459556, January.
    25. David Popp, 2011. "International Technology Transfer, Climate Change, and the Clean Development Mechanism," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 131-152, Winter.
    26. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    27. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    28. World Bank, 2008. "Global Economic Prospects 2008 : Technology Diffusion in the Developing World," World Bank Publications - Books, The World Bank Group, number 6335.
    29. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    30. Hall, Bronwyn H. & Helmers, Christian, 2013. "Innovation and diffusion of clean/green technology: Can patent commons help?," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 33-51.
    31. van Zon, Adriaan & Yetkiner, I. Hakan, 2003. "An endogenous growth model with embodied energy-saving technical change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 81-103, February.
    32. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    33. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.
    34. Bosetti, Valentina & Tavoni, Massimo, 2009. "Uncertain R&D, backstop technology and GHGs stabilization," Energy Economics, Elsevier, vol. 31(Supplemen), pages 18-26.
    35. Yoram Ben-Porath, 1967. "The Production of Human Capital and the Life Cycle of Earnings," Journal of Political Economy, University of Chicago Press, vol. 75(4), pages 352-352.
    36. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
    37. Gerlagh, Reyer & van der Zwaan, Bob, 2003. "Gross world product and consumption in a global warming model with endogenous technological change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 35-57, February.
    38. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    39. Pindyck, Robert S., 2002. "Optimal timing problems in environmental economics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1677-1697, August.
    40. Cowan, Robin, 1990. "Nuclear Power Reactors: A Study in Technological Lock-in," The Journal of Economic History, Cambridge University Press, vol. 50(3), pages 541-567, September.
    41. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    42. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    43. Reyer Gerlagh & Onno Kuik, 2007. "Carbon Leakage with International Technology Spillovers," Working Papers 2007.33, Fondazione Eni Enrico Mattei.
    44. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    45. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    46. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    47. Held, Hermann & Kriegler, Elmar & Lessmann, Kai & Edenhofer, Ottmar, 2009. "Efficient climate policies under technology and climate uncertainty," Energy Economics, Elsevier, vol. 31(Supplemen), pages 50-61.
    48. Manuel Frondel & Christoph M. Schmidt, 2002. "The Capital-Energy Controversy: An Artifact of Cost Shares?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 53-79.
    49. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    50. Jacob A. Mincer, 1974. "Schooling and Earnings," NBER Chapters, in: Schooling, Experience, and Earnings, pages 41-63, National Bureau of Economic Research, Inc.
    51. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    52. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
    53. Jacob A. Mincer, 1974. "Schooling, Experience, and Earnings," NBER Books, National Bureau of Economic Research, Inc, number minc74-1, June.
    54. Thompson, Peter & Taylor, Timothy G, 1995. "The Capital-Energy Substitutability Debate: A New Look," The Review of Economics and Statistics, MIT Press, vol. 77(3), pages 565-569, August.
    55. Kenneth J. Arrow & Anthony C. Fisher, 1974. "Environmental Preservation, Uncertainty, and Irreversibility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 88(2), pages 312-319.
    56. Berndt, Ernst R & Wood, David O, 1979. "Engineering and Econometric Interpretations of Energy-Capital Complementarity," American Economic Review, American Economic Association, vol. 69(3), pages 342-354, June.
    57. Ulph, Alistair & Ulph, David, 1997. "Global Warming, Irreversibility and Learning," Economic Journal, Royal Economic Society, vol. 107(442), pages 636-650, May.
    58. Keller, Wolfgang, 1996. "Absorptive capacity: On the creation and acquisition of technology in development," Journal of Development Economics, Elsevier, vol. 49(1), pages 199-227, April.
    59. Marian Leimbach & Klaus Eisenack, 2009. "A Trade Algorithm for Multi-Region Models Subject to Spillover Externalities," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 107-130, March.
    60. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    61. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jie & Liao, Xianchun & Yu, Yue, 2022. "The examination of resource tax reform facilitating firms’ green innovation in resource-related industry in China," Resources Policy, Elsevier, vol. 79(C).
    2. Geng, Jiang-Bo & Xu, Xiao-Yue & Ji, Qiang, 2020. "The time-frequency impacts of natural gas prices on US economic activity," Energy, Elsevier, vol. 205(C).
    3. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
    4. Kahouli, Bassem, 2018. "The causality link between energy electricity consumption, CO2 emissions, R&D stocks and economic growth in Mediterranean countries (MCs)," Energy, Elsevier, vol. 145(C), pages 388-399.
    5. Mare Sarr & Tim Swanson, 2017. "Will Technological Change Save the World? The Rebound Effect in International Transfers of Technology," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 577-604, March.
    6. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    7. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    8. Yang, Zhenbing & Hao, Chunyan & Shao, Shuai & Chen, Zhuo & Yang, Lili, 2022. "Appropriate technology and energy security: From the perspective of biased technological change," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    9. Yongchao Zeng & Peiwu Dong & Yingying Shi & Yang Li, 2018. "On the Disruptive Innovation Strategy of Renewable Energy Technology Diffusion: An Agent-Based Model," Energies, MDPI, vol. 11(11), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    2. Jin, Wei & Zhang, ZhongXiang, 2014. "On the Mechanism of International Technology Diffusion for Energy Productivity Growth," Climate Change and Sustainable Development 172434, Fondazione Eni Enrico Mattei (FEEM).
    3. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Jin, Wei, 2015. "Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework," China Economic Review, Elsevier, vol. 34(C), pages 64-82.
    5. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
    7. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    8. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    9. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    10. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    11. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
    12. Luca Spinesi, 2022. "The Environmental Tax: Effects on Inequality and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(3), pages 529-572, July.
    13. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    14. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
    15. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
    16. Leimbach, Marian & Baumstark, Lavinia, 2010. "The impact of capital trade and technological spillovers on climate policies," Ecological Economics, Elsevier, vol. 69(12), pages 2341-2355, October.
    17. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    18. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    19. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    20. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.

    More about this item

    Keywords

    technological innovation; energy technology diffusion; Solow growth model; endogenous growth model;
    All these keywords.

    JEL classification:

    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • F18 - International Economics - - Trade - - - Trade and Environment

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:ccepwp:1405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCEP (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.