IDEAS home Printed from https://ideas.repec.org/p/fae/ppaper/2019.04.html
   My bibliography  Save this paper

How sensitive are optimal fully renewable power systems to technology cost uncertainty?

Author

Listed:
  • Behrang Shirizadeh

    (CIRED)

  • Quentin Perrier

    (CIRED, I4CE)

  • Philippe Quirion

    (CIRED, CNRS)

Abstract

Many studies have demonstrated the feasibility of fully renewable power systems in various countries and regions. Yet the future costs of key technologies are highly uncertain and little is known about the robustness of a renewable power system to these uncertainties. We build 315 long-term cost scenarios on the basis of recent prospective studies, varying the costs of key technologies. We model the optimal renewable power system for France over 18 meteorological years, simultaneously optimizing investment and dispatch. Our results show that the optimal energy mix is highly sensitive to cost assumptions: the installed capacity in PV, onshore wind and power-to-gas varies by a factor of 5, batteries and offshore wind even more. Nevertheless, we have a robust result showing that the cost of a 100% renewable power system will not be higher than today. Finally, we show that the cost of not installing the absolutely ‘optimal’ mix is limited. Contrary to current estimates of increasing integration costs, this indicates that renewable technologies will become by and large substitutable.

Suggested Citation

  • Behrang Shirizadeh & Quentin Perrier & Philippe Quirion, 2019. "How sensitive are optimal fully renewable power systems to technology cost uncertainty?," Policy Papers 2019.04, FAERE - French Association of Environmental and Resource Economists.
  • Handle: RePEc:fae:ppaper:2019.04
    as

    Download full text from publisher

    File URL: http://faere.fr/pub/PolicyPapers/Shirizadeh_Perrier_Quirion_FAERE_PP2019_04.pdf
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
    2. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," European Economic Review, Elsevier, vol. 108(C), pages 259-279.
    3. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Reprint of Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 184(C), pages 1529-1550.
    4. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    5. Hirth, Lion & Müller, Simon, 2016. "System-friendly wind power," Energy Economics, Elsevier, vol. 56(C), pages 51-63.
    6. Perrier, Quentin, 2018. "The second French nuclear bet," Energy Economics, Elsevier, vol. 74(C), pages 858-877.
    7. Lauret, Philippe & Boland, John & Ridley, Barbara, 2013. "Bayesian statistical analysis applied to solar radiation modelling," Renewable Energy, Elsevier, vol. 49(C), pages 124-127.
    8. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    9. Moraes, L. & Bussar, C. & Stoecker, P. & Jacqué, Kevin & Chang, Mokhi & Sauer, D.U., 2018. "Comparison of long-term wind and photovoltaic power capacity factor datasets with open-license," Applied Energy, Elsevier, vol. 225(C), pages 209-220.
    10. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    11. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    12. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    13. Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
    14. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    2. Ayat-allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2020. "Adequacy of Renewable Energy Mixes with Concentrated Solar Power and Photovoltaic in Morocco: Impact of Thermal Storage and Cost," Energies, MDPI, vol. 13(19), pages 1-34, September.
    3. Shirizadeh, Behrang & Quirion, Philippe, 2022. "Do multi-sector energy system optimization models need hourly temporal resolution? A case study with an investment and dispatch model applied to France," Applied Energy, Elsevier, vol. 305(C).
    4. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    5. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    6. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    7. Ayat-allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Energies, MDPI, vol. 14(15), pages 1-43, August.
    8. Behrang Shirizadeh & Philippe Quirion, 2023. "Long-term optimization of the hydrogen-electricity nexus in France," Post-Print hal-04347126, HAL.
    9. Ayat-Allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Post-Print hal-03344439, HAL.
    10. Maimó-Far, Aina & Homar, Víctor & Tantet, Alexis & Drobinski, Philippe, 2024. "The trade-off between socio-environmental awareness and renewable penetration targets in energy transition roadmaps," Applied Energy, Elsevier, vol. 355(C).
    11. Shirizadeh, Behrang & Quirion, Philippe, 2023. "Long-term optimization of the hydrogen-electricity nexus in France: Green, blue, or pink hydrogen?," Energy Policy, Elsevier, vol. 181(C).
    12. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    2. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    3. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.
    4. Shirizadeh, Behrang & Quirion, Philippe, 2022. "Do multi-sector energy system optimization models need hourly temporal resolution? A case study with an investment and dispatch model applied to France," Applied Energy, Elsevier, vol. 305(C).
    5. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    6. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    7. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    8. Helm, Carsten & Mier, Mathias, 2019. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Carbon Pricing," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203539, Verein für Socialpolitik / German Economic Association.
    9. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    10. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Carsten Helm & Mathias Mier, 2018. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Pricing," Working Papers V-413-18, University of Oldenburg, Department of Economics, revised Oct 2018.
    12. Lugovoy, Oleg & Gao, Shuo & Gao, Ji & Jiang, Kejun, 2021. "Feasibility study of China's electric power sector transition to zero emissions by 2050," Energy Economics, Elsevier, vol. 96(C).
    13. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    16. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    17. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    18. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "Buffering volatility: Storage investments and technology-specific renewable energy support," Energy Economics, Elsevier, vol. 84(S1).
    19. Dujardin, Jérôme & Schillinger, Moritz & Kahl, Annelen & Savelsberg, Jonas & Schlecht, Ingmar & Lordan-Perret, Rebecca, 2022. "Optimized market value of alpine solar photovoltaic installations," Renewable Energy, Elsevier, vol. 186(C), pages 878-888.
    20. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).

    More about this item

    Keywords

    Power system modelling; Variable renewables; Electricity storage; Robust decision making;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fae:ppaper:2019.04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dorothée Charlier (email available below). General contact details of provider: https://edirc.repec.org/data/faereea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.