IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp317-323.html
   My bibliography  Save this article

Construction of an innovative adsorbent bed configuration in the adsorption chiller - Selection criteria for effective sorbent-glue pair

Author

Listed:
  • Grabowska, Karolina
  • Krzywanski, Jaroslaw
  • Nowak, Wojciech
  • Wesolowska, Marta

Abstract

Due to the progressive climate changes, increasing demand for cooling is observed. Therefore, ecological alternatives to conventional cooling systems based on electricity are analysed. One of the promising solutions are adsorption chillers which can be powered by low grade thermal energy sources such as waste heat, solar power and heat produced in cogeneration. However, contemporary adsorption chillers achieve lower COP (coefficient of performance) when compared to conventional electricity-driven compression refrigerators. Refrigeration capacity of the adsorption chiller is obtained with the use of thermal effects which occur during adsorption and desorption processes on porous media and the intensification of this phenomena is currently one of the most important research challenges. The paper presents development of guidelines to build novel coated construction of adsorption beds. The criterion for selection of optimum bed components in terms of improving COP of the adsorption chillers dedicated to air conditioning has been defined. Silica gel has been indicated as the most favorable sorbent for modification of the bed construction with glue.

Suggested Citation

  • Grabowska, Karolina & Krzywanski, Jaroslaw & Nowak, Wojciech & Wesolowska, Marta, 2018. "Construction of an innovative adsorbent bed configuration in the adsorption chiller - Selection criteria for effective sorbent-glue pair," Energy, Elsevier, vol. 151(C), pages 317-323.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:317-323
    DOI: 10.1016/j.energy.2018.03.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chorowski, Maciej & Pyrka, Piotr, 2015. "Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration," Energy, Elsevier, vol. 92(P2), pages 221-229.
    2. Shmroukh, Ahmed N. & Ali, Ahmed Hamza H. & Ookawara, Shinichi, 2015. "Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 445-456.
    3. Rezk, Ahmed & AL-Dadah, Raya & Mahmoud, Saad & Elsayed, Ahmed, 2013. "Investigation of Ethanol/metal organic frameworks for low temperature adsorption cooling applications," Applied Energy, Elsevier, vol. 112(C), pages 1025-1031.
    4. Harby, K., 2017. "Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1247-1264.
    5. Stanek, Wojciech & Gazda, Wiesław & Kostowski, Wojciech, 2015. "Thermo-ecological assessment of CCHP (combined cold-heat-and-power) plant supported with renewable energy," Energy, Elsevier, vol. 92(P3), pages 279-289.
    6. Chakraborty, Anutosh & Saha, Bidyut Baran & Aristov, Yuri I., 2014. "Dynamic behaviors of adsorption chiller: Effects of the silica gel grain size and layers," Energy, Elsevier, vol. 78(C), pages 304-312.
    7. Aristov, Yuriy I. & Glaznev, Ivan S. & Girnik, Ilya S., 2012. "Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration," Energy, Elsevier, vol. 46(1), pages 484-492.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
    2. Zhao, Chong & Wang, Yunfeng & Li, Ming & Zhao, Wenkui & Li, Xuejuan & Yu, Qiongfen & Huang, Mengxiao, 2020. "Impact of three different enhancing mass transfer operating characteristics on a solar adsorption refrigeration system with compound parabolic concentrator," Renewable Energy, Elsevier, vol. 152(C), pages 1354-1366.
    3. Wojciech Kalawa & Karol Sztekler & Agata Mlonka-Mędrala & Ewelina Radomska & Wojciech Nowak & Łukasz Mika & Tomasz Bujok & Piotr Boruta, 2023. "Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers," Energies, MDPI, vol. 16(15), pages 1-22, August.
    4. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Agata Mlonka-Medrala & Marcin Sowa & Wojciech Nowak, 2021. "Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller," Energies, MDPI, vol. 14(4), pages 1-13, February.
    5. Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
    6. Karol Sztekler, 2021. "Optimisation of Operation of Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(9), pages 1-20, May.
    7. Kavian, Soheil & Hakkaki-Fard, Ali & Jafari Mosleh, Hassan, 2020. "Energy performance and economic feasibility of hot spring-based district heating system – A case study," Energy, Elsevier, vol. 211(C).
    8. Anna Kulakowska & Anna Pajdak & Jaroslaw Krzywanski & Karolina Grabowska & Anna Zylka & Marcin Sosnowski & Marta Wesolowska & Karol Sztekler & Wojciech Nowak, 2020. "Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica Gel-Based Adsorption Bed," Energies, MDPI, vol. 13(6), pages 1-15, March.
    9. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Marcin Sowa, 2021. "Effect of Metal Additives in the Bed on the Performance Parameters of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(21), pages 1-27, November.
    10. Marcin Sosnowski, 2019. "Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology," Energies, MDPI, vol. 12(24), pages 1-19, December.
    11. Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
    12. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    13. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frazzica, A. & Palomba, V. & Dawoud, B. & Gullì, G. & Brancato, V. & Sapienza, A. & Vasta, S. & Freni, A. & Costa, F. & Restuccia, G., 2016. "Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair," Applied Energy, Elsevier, vol. 174(C), pages 15-24.
    2. Karol Sztekler & Wojciech Kalawa & Wojciech Nowak & Lukasz Mika & Slawomir Gradziel & Jaroslaw Krzywanski & Ewelina Radomska, 2020. "Experimental Study of Three-Bed Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 13(21), pages 1-13, November.
    3. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Farkad A. Lattieff & Mohammed A. Atiya & Jasim M. Mahdi & Hasan Sh. Majdi & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Performance Analysis of a Solar Cooling System with Equal and Unequal Adsorption/Desorption Operating Time," Energies, MDPI, vol. 14(20), pages 1-16, October.
    5. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    6. Teng, W.S. & Leong, K.C. & Chakraborty, A., 2016. "Revisiting adsorption cooling cycle from mathematical modelling to system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 315-332.
    7. Maciej Chorowski & Piotr Pyrka & Zbigniew Rogala & Piotr Czupryński, 2019. "Experimental Study of Performance Improvement of 3-Bed and 2-Evaporator Adsorption Chiller by Control Optimization," Energies, MDPI, vol. 12(20), pages 1-17, October.
    8. Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
    9. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.
    10. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    11. Jung-Gil Lee & Kyung Jin Bae & Oh Kyung Kwon, 2020. "Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents," Energies, MDPI, vol. 13(10), pages 1-16, May.
    12. AL-Dadah, Raya & Mahmoud, Saad & Elsayed, Eman & Youssef, Peter & Al-Mousawi, Fadhel, 2020. "Metal-organic framework materials for adsorption heat pumps," Energy, Elsevier, vol. 190(C).
    13. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    14. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    15. Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
    16. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    17. Zbigniew Rogala & Piotr Kolasiński & Przemysław Błasiak, 2018. "The Influence of Operating Parameters on Adsorption/Desorption Characteristics and Performance of the Fluidised Desiccant Cooler," Energies, MDPI, vol. 11(6), pages 1-16, June.
    18. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Stanek, Wojciech & Simla, Tomasz & Gazda, Wiesław, 2019. "Exergetic and thermo-ecological assessment of heat pump supported by electricity from renewable sources," Renewable Energy, Elsevier, vol. 131(C), pages 404-412.
    20. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:317-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.