IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5827-d441709.html
   My bibliography  Save this article

Experimental Study of Three-Bed Adsorption Chiller with Desalination Function

Author

Listed:
  • Karol Sztekler

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland)

  • Wojciech Kalawa

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland)

  • Wojciech Nowak

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland)

  • Lukasz Mika

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland)

  • Slawomir Gradziel

    (Department of Energy, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Jana Pawla II 37 St., 31-864 Cracow, Poland)

  • Jaroslaw Krzywanski

    (Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, A. Krajowej 13/15, 42-200 Czestochowa, Poland)

  • Ewelina Radomska

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland)

Abstract

Energy efficiency is one of the most important topics nowadays. It is strictly related to energy demand, energy policy, environmental pollution, and economic issues. Energy efficiency can be increased and operating costs reduced by using waste heat from other processes. One of the possibilities is to use sorption chillers to produce chilled water and desalinated water. Low-temperature waste heat is not easy to utilize because of the low energy potential. Using adsorption chillers in low-temperature conditions allows utilizing waste heat and producing useful products in many regions of the world. The paper presents the results of an experimental study carried out on a three-bed adsorption chiller with desalination function, using silica gel and water as a working pair. The laboratory test stand included one evaporator, one condenser, and three separate tanks for water, desalinated water, and brine, respectively. The test stands scheme and description were presented. All results were obtained during several test hours with stable temperature conditions in the range of 57–85 °C for the heating water. It is found that the Coefficient of Performance (COP) increased from 0.20 to 0.58 when the heating water temperature increased from 57 to 85 °C. A similar finding is reported for Specific Cooling Power (SCP), which increased from 27 to 160 W/kg as the heating water temperature increased from 57 to 85 °C. It can be concluded that the heating water temperature strongly impacts the performance of the adsorption chiller.

Suggested Citation

  • Karol Sztekler & Wojciech Kalawa & Wojciech Nowak & Lukasz Mika & Slawomir Gradziel & Jaroslaw Krzywanski & Ewelina Radomska, 2020. "Experimental Study of Three-Bed Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 13(21), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5827-:d:441709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2009. "High Performance Cascading Adsorption Refrigeration Cycle with Internal Heat Recovery Driven by a Low Grade Heat Source Temperature," Energies, MDPI, vol. 2(4), pages 1-22, November.
    2. Chorowski, Maciej & Pyrka, Piotr, 2015. "Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration," Energy, Elsevier, vol. 92(P2), pages 221-229.
    3. Jung-Gil Lee & Kyung Jin Bae & Oh Kyung Kwon, 2020. "Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents," Energies, MDPI, vol. 13(10), pages 1-16, May.
    4. Shmroukh, Ahmed N. & Ali, Ahmed Hamza H. & Ookawara, Shinichi, 2015. "Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 445-456.
    5. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
    6. Li Huang & Rongyue Zheng & Udo Piontek, 2019. "Installation and Operation of a Solar Cooling and Heating System Incorporated with Air-Source Heat Pumps," Energies, MDPI, vol. 12(6), pages 1-17, March.
    7. Maciej Chorowski & Piotr Pyrka & Zbigniew Rogala & Piotr Czupryński, 2019. "Experimental Study of Performance Improvement of 3-Bed and 2-Evaporator Adsorption Chiller by Control Optimization," Energies, MDPI, vol. 12(20), pages 1-17, October.
    8. Faizan Shabir & Muhammad Sultan & Yasir Niaz & Muhammad Usman & Sobhy M. Ibrahim & Yongqiang Feng & Bukke Kiran Naik & Abdul Nasir & Imran Ali, 2020. "Steady-State Investigation of Carbon-Based Adsorbent–Adsorbate Pairs for Heat Transformation Application," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gulshan Khatun & Shakila Sultana & Zafar Iqbal Khan & Nazma Parveen & Khandker Farid Uddin Ahmed, 2023. "Performance Evaluation of a Three-Bed (Unequal Bed) Adsorption Chiller Employing an Advanced Mass Recovery Process," International Journal of Sciences, Office ijSciences, vol. 12(12), pages 1-6, December.
    2. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    3. Li, Ye & Liu, Zihan & Sang, Yufeng & Hu, Jingfan & Li, Bojia & Zhang, Xinyu & Jurasz, Jakub & Zheng, Wandong, 2023. "Optimization of integrated energy system for low-carbon community considering the feasibility and application limitation," Applied Energy, Elsevier, vol. 348(C).
    4. Lucas, Tiago R. & Ferreira, Ana F. & Santos Pereira, R.B. & Alves, Marco, 2022. "Hydrogen production from the WindFloat Atlantic offshore wind farm: A techno-economic analysis," Applied Energy, Elsevier, vol. 310(C).
    5. Kabeel, A.E. & Attia, Mohammed El Hadi & Zayed, Mohamed E. & Abdelgaied, Mohamed & Abdullah, A.S. & El-Maghlany, Wael M., 2022. "Performance enhancement of a v-corrugated basin hemispherical solar distiller combined with reversed solar collector: An experimental approach," Renewable Energy, Elsevier, vol. 190(C), pages 330-337.
    6. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Agata Mlonka-Medrala & Marcin Sowa & Wojciech Nowak, 2021. "Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller," Energies, MDPI, vol. 14(4), pages 1-13, February.
    7. Karol Sztekler, 2021. "Optimisation of Operation of Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(9), pages 1-20, May.
    8. Karol Sztekler & Tomasz Siwek & Wojciech Kalawa & Lukasz Lis & Lukasz Mika & Ewelina Radomska & Wojciech Nowak, 2021. "CFD Analysis of Elements of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(22), pages 1-19, November.
    9. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Marcin Sowa, 2021. "Effect of Metal Additives in the Bed on the Performance Parameters of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(21), pages 1-27, November.
    10. Tokarev, M.M. & Girnik, I.S. & Aristov, Yu.I., 2022. "Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle," Energy, Elsevier, vol. 238(PC).
    11. Karol Sztekler & Łukasz Mika, 2021. "Increasing the Performance of an Adsorption Chiller Operating in the Water Desalination Mode," Energies, MDPI, vol. 14(22), pages 1-19, November.
    12. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karol Sztekler & Wojciech Kalawa & Lukasz Mika & Jaroslaw Krzywanski & Karolina Grabowska & Marcin Sosnowski & Wojciech Nowak & Tomasz Siwek & Artur Bieniek, 2020. "Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller," Energies, MDPI, vol. 13(3), pages 1-12, January.
    2. Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
    3. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Farkad A. Lattieff & Mohammed A. Atiya & Jasim M. Mahdi & Hasan Sh. Majdi & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Performance Analysis of a Solar Cooling System with Equal and Unequal Adsorption/Desorption Operating Time," Energies, MDPI, vol. 14(20), pages 1-16, October.
    5. Bartlomiej Nalepa & Tomasz Halon, 2021. "Recommendations for Running a Tandem of Adsorption Chillers Connected in Series and Powered by Low-Temperature Heat from District Heating Network," Energies, MDPI, vol. 14(16), pages 1-17, August.
    6. Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
    7. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Grabowska, Karolina & Krzywanski, Jaroslaw & Nowak, Wojciech & Wesolowska, Marta, 2018. "Construction of an innovative adsorbent bed configuration in the adsorption chiller - Selection criteria for effective sorbent-glue pair," Energy, Elsevier, vol. 151(C), pages 317-323.
    9. Tryfon C. Roumpedakis & Salvatore Vasta & Alessio Sapienza & George Kallis & Sotirios Karellas & Ursula Wittstadt & Mirko Tanne & Niels Harborth & Uwe Sonnenfeld, 2020. "Performance Results of a Solar Adsorption Cooling and Heating Unit," Energies, MDPI, vol. 13(7), pages 1-18, April.
    10. Zbigniew Rogala & Piotr Kolasiński & Przemysław Błasiak, 2018. "The Influence of Operating Parameters on Adsorption/Desorption Characteristics and Performance of the Fluidised Desiccant Cooler," Energies, MDPI, vol. 11(6), pages 1-16, June.
    11. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Zu, Kan & Qin, Menghao, 2021. "Experimental and modeling investigation of water adsorption of hydrophilic carboxylate-based MOF for indoor moisture control," Energy, Elsevier, vol. 228(C).
    13. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    14. Beáta Stehlíková & Erika Fecková Škrabuľáková & Gabriela Bogdanovská & Matúš Fecko, 2024. "Evaluation of Heating Efficiency Increase Using a Simple Heat Recovery Unit," Energies, MDPI, vol. 17(12), pages 1-13, June.
    15. Ali Alahmer & Xiaolin Wang & K. C. Amanul Alam, 2020. "Dynamic and Economic Investigation of a Solar Thermal-Driven Two-Bed Adsorption Chiller under Perth Climatic Conditions," Energies, MDPI, vol. 13(4), pages 1-19, February.
    16. Palomba, Valeria & Vasta, Salvatore & Freni, Angelo & Pan, Quanwen & Wang, Ruzhu & Zhai, Xiaoqiang, 2017. "Increasing the share of renewables through adsorption solar cooling: A validated case study," Renewable Energy, Elsevier, vol. 110(C), pages 126-140.
    17. Zhao, Junjie & Chang, Huawei & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Dynamic analysis of a CCHP system based on fuel cells integrated with methanol-reforming and dehumidification for data centers," Applied Energy, Elsevier, vol. 309(C).
    18. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    19. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    20. Marlinda & Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2010. "Performance Analysis of a Double-effect Adsorption Refrigeration Cycle with a Silica Gel/Water Working Pair," Energies, MDPI, vol. 3(11), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5827-:d:441709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.