IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp544-555.html
   My bibliography  Save this article

Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix

Author

Listed:
  • Cany, C.
  • Mansilla, C.
  • Mathonnière, G.
  • da Costa, P.

Abstract

With the aim of targeting low-carbon energy mixes, variable renewable energy sources, i.e. wind and solar, are broadly promoted worldwide. In France, nuclear is the first contributor to today's low-carbon power mix and it will, tomorrow, be challenged by the increase of variable renewable energy sources. This paper develops a prospective approach to examine the solicitations that nuclear will have to face, for several scenarios. Results show that, with the penetration of renewable energy sources, the number of extreme nuclear power ramps and amplitudes variations increase, as well as the number of annually required shut-downs/start-ups events per reactor, even if the nuclear capacity was to be lowered. Beyond 30% wind and solar penetration, complementary flexibility options will have to be leveraged.

Suggested Citation

  • Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix," Energy, Elsevier, vol. 150(C), pages 544-555.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:544-555
    DOI: 10.1016/j.energy.2018.02.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/10016 is not listed on IDEAS
    2. Oree, Vishwamitra & Sayed Hassen, Sayed Z., 2016. "A composite metric for assessing flexibility available in conventional generators of power systems," Applied Energy, Elsevier, vol. 177(C), pages 683-691.
    3. Maria Lykidi & Pascal Gourdel, 2017. "Optimal management of flexible nuclear power plants in a decarbonising competitive electricity market: The French case," PSE-Ecole d'économie de Paris (Postprint) hal-03659252, HAL.
    4. Maria Lykidi & Pascal Gourdel, 2017. "Optimal management of flexible nuclear power plants in a decarbonising competitive electricity market: The French case," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03659252, HAL.
    5. Cany, Camille & Mansilla, Christine & da Costa, Pascal & Mathonnière, Gilles & Duquesnoy, Thierry & Baschwitz, Anne, 2016. "Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix," Energy Policy, Elsevier, vol. 95(C), pages 135-146.
    6. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    7. Isabelle Tobin & Robert Vautard & Irena Balog & François-Marie Bréon & Sonia Jerez & Paolo Ruti & Françoise Thais & Mathieu Vrac & Pascal Yiou, 2015. "Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections," Climatic Change, Springer, vol. 128(1), pages 99-112, January.
    8. Ignacio J. Perez-Arriaga & Carlos Batlle, 2012. "Impacts of Intermittent Renewables on Electricity Generation System Operation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    9. Shaker, Hamid & Zareipour, Hamidreza & Wood, David, 2016. "Impacts of large-scale wind and solar power integration on California׳s net electrical load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 761-774.
    10. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    11. Marco Cometto & Jan Horst Keppler, 2012. "Nuclear Energy and Renewables - System Effects in Low-Carbon Electricity Systems," Working Papers hal-01609471, HAL.
    12. Lykidi, Maria & Gourdel, Pascal, 2017. "Optimal management of flexible nuclear power plants in a decarbonising competitive electricity market: The French case," Energy, Elsevier, vol. 132(C), pages 171-185.
    13. Troy, Niamh & Denny, Eleanor & O'Malley, Mark, 2010. "Base-load cycling on a system with significant wind penetration," MPRA Paper 34848, University Library of Munich, Germany.
    14. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible," Energy, Elsevier, vol. 35(5), pages 2164-2173.
    15. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    16. Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2008. "Considerations on the backup of wind power: Operational backup," Applied Energy, Elsevier, vol. 85(9), pages 787-799, September.
    17. Maria Lykidi & Pascal Gourdel, 2017. "Optimal management of flexible nuclear power plants in a decarbonising competitive electricity market: The French case," Post-Print hal-03659252, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
    2. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear power supply: Going against the misconceptions. Evidence of nuclear flexibility from the French experience," Energy, Elsevier, vol. 151(C), pages 289-296.
    3. Ozan Korkmaz & Bihrat Önöz, 2022. "Modelling the Potential Impacts of Nuclear Energy and Renewables in the Turkish Energy System," Energies, MDPI, vol. 15(4), pages 1-25, February.
    4. Tlili, Olfa & Mansilla, Christine & Robinius, Martin & Syranidis, Konstantinos & Reuss, Markus & Linssen, Jochen & André, Jean & Perez, Yannick & Stolten, Detlef, 2019. "Role of electricity interconnections and impact of the geographical scale on the French potential of producing hydrogen via electricity surplus by 2035," Energy, Elsevier, vol. 172(C), pages 977-990.
    5. Radim Rybár & Martin Beer & Tawfik Mudarri & Sergey Zhironkin & Kamila Bačová & Jaroslav Dugas, 2021. "Experimental Evaluation of an Innovative Non-Metallic Flat Plate Solar Collector," Energies, MDPI, vol. 14(19), pages 1-16, September.
    6. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    7. Lin, Boqiang & Xie, Yongjing, 2022. "Analysis on operational efficiency and its influencing factors of China’s nuclear power plants," Energy, Elsevier, vol. 261(PA).
    8. Mezősi, András & Felsmann, Balázs & Kerekes, Lajos & Szabó, László, 2020. "Coexistence of nuclear and renewables in the V4 electricity system: Friends or enemies?," Energy Policy, Elsevier, vol. 140(C).
    9. César Berna-Escriche & Ángel Pérez-Navarro & Alberto Escrivá & Elías Hurtado & José Luis Muñoz-Cobo & María Cristina Moros, 2021. "Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    10. Saulius Baskutis & Jolanta Baskutiene & Valentinas Navickas & Yuriy Bilan & Wojciech Cieśliński, 2021. "Perspectives and Problems of Using Renewable Energy Sources and Implementation of Local “Green” Initiatives: A Regional Assessment," Energies, MDPI, vol. 14(18), pages 1-16, September.
    11. Rizqi, Zakka Ugih & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2023. "Green energy mix modeling under supply uncertainty: Hybrid system dynamics and adaptive PSO approach," Applied Energy, Elsevier, vol. 349(C).
    12. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    13. Louis, Jean-Nicolas & Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Tran-Quoc, Tuan & Hadjsaid, Nouredine, 2018. "Environmental impact indicators for the electricity mix and network development planning towards 2050 – A POLES and EUTGRID model," Energy, Elsevier, vol. 163(C), pages 618-628.
    14. Hassan, Syed Tauseef & Khan, Danish & Zhu, Bangzhu & Batool, Bushra, 2022. "Is public service transportation increase environmental contamination in China? The role of nuclear energy consumption and technological change," Energy, Elsevier, vol. 238(PC).
    15. Chen, Jiayang & Zheng, Wen & Kong, Ying & Yang, Xiaolin & Liu, Zhaoyang & Xia, Jianjun, 2021. "Case study on combined heat and water system for nuclear district heating in Jiaodong Peninsula," Energy, Elsevier, vol. 218(C).
    16. Pierre Cayet & Arash Farnoosh, 2022. "A robust structural electric system model with significant share of intermittent renewables under auto-correlated residual demand," EconomiX Working Papers 2022-6, University of Paris Nanterre, EconomiX.
    17. Badr Eddine Lebrouhi & Éric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Post-Print hal-03716839, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rinne, Sonja, 2018. "Radioinactive: Are nuclear power plant outages in France contagious to the German electricity price?," CIW Discussion Papers 3/2018, University of Münster, Center for Interdisciplinary Economics (CIW).
    2. Cany, Camille & Mansilla, Christine & da Costa, Pascal & Mathonnière, Gilles & Duquesnoy, Thierry & Baschwitz, Anne, 2016. "Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix," Energy Policy, Elsevier, vol. 95(C), pages 135-146.
    3. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    4. Saleh Abujarad & Mohd Wazir Mustafa & Jasrul Jamani Jamian & Abdirahman M. Abdilahi & Jeroen D. M. De Kooning & Jan Desmet & Lieven Vandevelde, 2020. "An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems," Energies, MDPI, vol. 13(21), pages 1-19, October.
    5. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
    6. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    7. Antonelli, Marco & Desideri, Umberto & Franco, Alessandro, 2018. "Effects of large scale penetration of renewables: The Italian case in the years 2008–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3090-3100.
    8. de Mars, Patrick & O’Sullivan, Aidan & Keppo, Ilkka, 2020. "Estimating the impact of variable renewable energy on base-load cycling in the GB power system," Energy, Elsevier, vol. 195(C).
    9. Ye, Liang-Cheng & Lin, Hai Xiang & Tukker, Arnold, 2019. "Future scenarios of variable renewable energies and flexibility requirements for thermal power plants in China," Energy, Elsevier, vol. 167(C), pages 708-714.
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    12. Dunguo Mou, 2018. "Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province," Sustainability, MDPI, vol. 10(2), pages 1-20, January.
    13. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    14. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2014. "The incentive to invest in thermal plants in the presence of wind generation," Energy Economics, Elsevier, vol. 43(C), pages 306-315.
    15. Claudio Marcantonini & A.Denny Ellerman, 2015. "The Implicit Carbon Price of Renewable Energy Incentives in Germany," The Energy Journal, , vol. 36(4), pages 205-240, October.
    16. Fogelberg, Sara & Lazarczyk, Ewa, 2017. "Wind power volatility and its impact on production failures in the Nordic electricity market," Renewable Energy, Elsevier, vol. 105(C), pages 96-105.
    17. Cullen, Joseph A. & Reynolds, Stanley S., 2023. "Market dynamics and investment in the electricity sector," International Journal of Industrial Organization, Elsevier, vol. 89(C).
    18. Urzúa, I.A. & Olmedo, J.C. & Sauma, E.E., 2016. "Impact of intermittent non-conventional renewable generation in the costs of the Chilean main power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 810-821.
    19. Claudio Marcantonini, A. Denny Ellerman, 2015. "The Implicit Carbon Price of Renewable Energy Incentives in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    20. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2014. "Short-term electricity planning with increase wind capacity," Energy, Elsevier, vol. 69(C), pages 12-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:544-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.